Hodge Theory and Complex Algebraic Geometry I:

Download Hodge Theory and Complex Algebraic Geometry I: PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521718011
Total Pages : 334 pages
Book Rating : 4.7/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Hodge Theory and Complex Algebraic Geometry I: by : Claire Voisin

Download or read book Hodge Theory and Complex Algebraic Geometry I: written by Claire Voisin and published by Cambridge University Press. This book was released on 2007-12-20 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a modern introduction to Kaehlerian geometry and Hodge structure. Coverage begins with variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory (with the latter being treated in a more theoretical way than is usual in geometry). The book culminates with the Hodge decomposition theorem. In between, the author proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The second part of the book investigates the meaning of these results in several directions.

Introduction to Hodge Theory

Download Introduction to Hodge Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821820407
Total Pages : 254 pages
Book Rating : 4.8/5 (24 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Hodge Theory by : José Bertin

Download or read book Introduction to Hodge Theory written by José Bertin and published by American Mathematical Soc.. This book was released on 2002 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hodge theory originated as an application of harmonic theory to the study of the geometry of compact complex manifolds. The ideas have proved to be quite powerful, leading to fundamentally important results throughout algebraic geometry. This book consists of expositions of various aspects of modern Hodge theory. Its purpose is to provide the nonexpert reader with a precise idea of the current status of the subject. The three chapters develop distinct but closely related subjects:$L2$ Hodge theory and vanishing theorems; Frobenius and Hodge degeneration; variations of Hodge structures and mirror symmetry. The techniques employed cover a wide range of methods borrowed from the heart of mathematics: elliptic PDE theory, complex differential geometry, algebraic geometry incharacteristic $p$, cohomological and sheaf-theoretic methods, deformation theory of complex varieties, Calabi-Yau manifolds, singularity theory, etc. A special effort has been made to approach the various themes from their most na The reader should have some familiarity with differential and algebraic geometry, with other prerequisites varying by chapter. The book is suitable as an accompaniment to a second course in algebraic geometry.

Recent Advances in Hodge Theory

Download Recent Advances in Hodge Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110754629X
Total Pages : 533 pages
Book Rating : 4.1/5 (75 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances in Hodge Theory by : Matt Kerr

Download or read book Recent Advances in Hodge Theory written by Matt Kerr and published by Cambridge University Press. This book was released on 2016-02-04 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combines cutting-edge research and expository articles in Hodge theory. An essential reference for graduate students and researchers.

A Course in Hodge Theory

Download A Course in Hodge Theory PDF Online Free

Author :
Publisher :
ISBN 13 : 9781571464002
Total Pages : 0 pages
Book Rating : 4.4/5 (64 download)

DOWNLOAD NOW!


Book Synopsis A Course in Hodge Theory by : Hossein Movasati

Download or read book A Course in Hodge Theory written by Hossein Movasati and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers an examination of the precursors of Hodge theory: first, the studies of elliptic and abelian integrals by Cauchy, Abel, Jacobi, and Riemann; and then the studies of two-dimensional multiple integrals by Poincare and Picard. The focus turns to the Hodge theory of affine hypersurfaces given by tame polynomials.

Period Mappings and Period Domains

Download Period Mappings and Period Domains PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108422624
Total Pages : 577 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Period Mappings and Period Domains by : James Carlson

Download or read book Period Mappings and Period Domains written by James Carlson and published by Cambridge University Press. This book was released on 2017-08-24 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to Griffiths' theory of period maps and domains, focused on algebraic, group-theoretic and differential geometric aspects.

Hodge Theory

Download Hodge Theory PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691161348
Total Pages : 607 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Hodge Theory by : Eduardo Cattani

Download or read book Hodge Theory written by Eduardo Cattani and published by Princeton University Press. This book was released on 2014-07-21 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and doesn't require a deep background. At the same time, the book presents some topics at the forefront of current research. The book is divided between introductory and advanced lectures. The introductory lectures address Kähler manifolds, variations of Hodge structure, mixed Hodge structures, the Hodge theory of maps, period domains and period mappings, algebraic cycles (up to and including the Bloch-Beilinson conjecture) and Chow groups, sheaf cohomology, and a new treatment of Grothendieck’s algebraic de Rham theorem. The advanced lectures address a Hodge-theoretic perspective on Shimura varieties, the spread philosophy in the study of algebraic cycles, absolute Hodge classes (including a new, self-contained proof of Deligne’s theorem on absolute Hodge cycles), and variation of mixed Hodge structures. The contributors include Patrick Brosnan, James Carlson, Eduardo Cattani, François Charles, Mark Andrea de Cataldo, Fouad El Zein, Mark L. Green, Phillip A. Griffiths, Matt Kerr, Lê Dũng Tráng, Luca Migliorini, Jacob P. Murre, Christian Schnell, and Loring W. Tu.

Mixed Hodge Structures

Download Mixed Hodge Structures PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540770178
Total Pages : 467 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Mixed Hodge Structures by : Chris A.M. Peters

Download or read book Mixed Hodge Structures written by Chris A.M. Peters and published by Springer Science & Business Media. This book was released on 2008-02-27 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is comprehensive basic monograph on mixed Hodge structures. Building up from basic Hodge theory the book explains Delingne's mixed Hodge theory in a detailed fashion. Then both Hain's and Morgan's approaches to mixed Hodge theory related to homotopy theory are sketched. Next comes the relative theory, and then the all encompassing theory of mixed Hodge modules. The book is interlaced with chapters containing applications. Three large appendices complete the book.

Hodge Theory, Complex Geometry, and Representation Theory

Download Hodge Theory, Complex Geometry, and Representation Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470410125
Total Pages : 314 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Hodge Theory, Complex Geometry, and Representation Theory by : Mark Green

Download or read book Hodge Theory, Complex Geometry, and Representation Theory written by Mark Green and published by American Mathematical Soc.. This book was released on 2013-11-05 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents topics in Hodge theory and representation theory, two of the most active and important areas in contemporary mathematics. The underlying theme is the use of complex geometry to understand the two subjects and their relationships to one another--an approach that is complementary to what is in the literature. Finite-dimensional representation theory and complex geometry enter via the concept of Hodge representations and Hodge domains. Infinite-dimensional representation theory, specifically the discrete series and their limits, enters through the realization of these representations through complex geometry as pioneered by Schmid, and in the subsequent description of automorphic cohomology. For the latter topic, of particular importance is the recent work of Carayol that potentially introduces a new perspective in arithmetic automorphic representation theory. The present work gives a treatment of Carayol's work, and some extensions of it, set in a general complex geometric framework. Additional subjects include a description of the relationship between limiting mixed Hodge structures and the boundary orbit structure of Hodge domains, a general treatment of the correspondence spaces that are used to construct Penrose transforms and selected other topics from the recent literature. A co-publication of the AMS and CBMS.

Hodge Decomposition - A Method for Solving Boundary Value Problems

Download Hodge Decomposition - A Method for Solving Boundary Value Problems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540494030
Total Pages : 161 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Hodge Decomposition - A Method for Solving Boundary Value Problems by : Günter Schwarz

Download or read book Hodge Decomposition - A Method for Solving Boundary Value Problems written by Günter Schwarz and published by Springer. This book was released on 2006-11-14 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hodge theory is a standard tool in characterizing differ- ential complexes and the topology of manifolds. This book is a study of the Hodge-Kodaira and related decompositions on manifolds with boundary under mainly analytic aspects. It aims at developing a method for solving boundary value problems. Analysing a Dirichlet form on the exterior algebra bundle allows to give a refined version of the classical decomposition results of Morrey. A projection technique leads to existence and regularity theorems for a wide class of boundary value problems for differential forms and vector fields. The book links aspects of the geometry of manifolds with the theory of partial differential equations. It is intended to be comprehensible for graduate students and mathematicians working in either of these fields.

p-adic Hodge Theory

Download p-adic Hodge Theory PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030438449
Total Pages : 325 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis p-adic Hodge Theory by : Bhargav Bhatt

Download or read book p-adic Hodge Theory written by Bhargav Bhatt and published by Springer Nature. This book was released on 2020-06-15 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume contains articles related to the research presented at the 2017 Simons Symposium on p-adic Hodge theory. This symposium was focused on recent developments in p-adic Hodge theory, especially those concerning integral questions and their connections to notions in algebraic topology. This volume features original research articles as well as articles that contain new research and survey some of these recent developments. It is the first of three volumes dedicated to p-adic Hodge theory.

Algebraic Cycles and Hodge Theory

Download Algebraic Cycles and Hodge Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540586920
Total Pages : 292 pages
Book Rating : 4.5/5 (869 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Cycles and Hodge Theory by : Mark L. Green

Download or read book Algebraic Cycles and Hodge Theory written by Mark L. Green and published by Springer Science & Business Media. This book was released on 1994-12-16 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of the CIME Summer School on "Algebraic Cycles and Hodge Theory" has been to gather the most active mathematicians in this area to make the point on the present state of the art. Thus the papers included in the proceedings are surveys and notes on the most important topics of this area of research. They include infinitesimal methods in Hodge theory; algebraic cycles and algebraic aspects of cohomology and k-theory, transcendental methods in the study of algebraic cycles.

Algebraic Geometry over the Complex Numbers

Download Algebraic Geometry over the Complex Numbers PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461418097
Total Pages : 326 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Geometry over the Complex Numbers by : Donu Arapura

Download or read book Algebraic Geometry over the Complex Numbers written by Donu Arapura and published by Springer Science & Business Media. This book was released on 2012-02-15 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.

Hodge Theory and Complex Algebraic Geometry II:

Download Hodge Theory and Complex Algebraic Geometry II: PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521718028
Total Pages : 362 pages
Book Rating : 4.7/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Hodge Theory and Complex Algebraic Geometry II: by : Claire Voisin

Download or read book Hodge Theory and Complex Algebraic Geometry II: written by Claire Voisin and published by Cambridge University Press. This book was released on 2007-12-20 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second volume of this modern account of Kaehlerian geometry and Hodge theory starts with the topology of families of algebraic varieties. The main results are the generalized Noether-Lefschetz theorems, the generic triviality of the Abel-Jacobi maps, and most importantly, Nori's connectivity theorem, which generalizes the above. The last part deals with the relationships between Hodge theory and algebraic cycles. The text is complemented by exercises offering useful results in complex algebraic geometry. Also available: Volume I 0-521-80260-1 Hardback $60.00 C

Foundations of Differentiable Manifolds and Lie Groups

Download Foundations of Differentiable Manifolds and Lie Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475717997
Total Pages : 283 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Differentiable Manifolds and Lie Groups by : Frank W. Warner

Download or read book Foundations of Differentiable Manifolds and Lie Groups written by Frank W. Warner and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.

Differential Forms on Singular Varieties

Download Differential Forms on Singular Varieties PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420026526
Total Pages : 333 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Differential Forms on Singular Varieties by : Vincenzo Ancona

Download or read book Differential Forms on Singular Varieties written by Vincenzo Ancona and published by CRC Press. This book was released on 2005-08-24 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Forms on Singular Varieties: De Rham and Hodge Theory Simplified uses complexes of differential forms to give a complete treatment of the Deligne theory of mixed Hodge structures on the cohomology of singular spaces. This book features an approach that employs recursive arguments on dimension and does not introduce spaces of hig

Complex Geometry

Download Complex Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540212904
Total Pages : 336 pages
Book Rating : 4.2/5 (129 download)

DOWNLOAD NOW!


Book Synopsis Complex Geometry by : Daniel Huybrechts

Download or read book Complex Geometry written by Daniel Huybrechts and published by Springer Science & Business Media. This book was released on 2005 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)

An Introduction to Manifolds

Download An Introduction to Manifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441974008
Total Pages : 426 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Manifolds by : Loring W. Tu

Download or read book An Introduction to Manifolds written by Loring W. Tu and published by Springer Science & Business Media. This book was released on 2010-10-05 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.