Introduction to Data Science

Download Introduction to Data Science PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319500171
Total Pages : 227 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Data Science by : Laura Igual

Download or read book Introduction to Data Science written by Laura Igual and published by Springer. This book was released on 2017-02-22 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.

A Hands-On Introduction to Data Science

Download A Hands-On Introduction to Data Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108472443
Total Pages : 459 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis A Hands-On Introduction to Data Science by : Chirag Shah

Download or read book A Hands-On Introduction to Data Science written by Chirag Shah and published by Cambridge University Press. This book was released on 2020-04-02 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.

Python Data Science Handbook

Download Python Data Science Handbook PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491912138
Total Pages : 609 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Python Data Science Handbook by : Jake VanderPlas

Download or read book Python Data Science Handbook written by Jake VanderPlas and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Introduction to Data Science

Download Introduction to Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000708039
Total Pages : 836 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Data Science by : Rafael A. Irizarry

Download or read book Introduction to Data Science written by Rafael A. Irizarry and published by CRC Press. This book was released on 2019-11-20 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.

Introducing Data Science

Download Introducing Data Science PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638352496
Total Pages : 475 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Introducing Data Science by : Davy Cielen

Download or read book Introducing Data Science written by Davy Cielen and published by Simon and Schuster. This book was released on 2016-05-02 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Introducing Data Science teaches you how to accomplish the fundamental tasks that occupy data scientists. Using the Python language and common Python libraries, you'll experience firsthand the challenges of dealing with data at scale and gain a solid foundation in data science. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Many companies need developers with data science skills to work on projects ranging from social media marketing to machine learning. Discovering what you need to learn to begin a career as a data scientist can seem bewildering. This book is designed to help you get started. About the Book Introducing Data ScienceIntroducing Data Science explains vital data science concepts and teaches you how to accomplish the fundamental tasks that occupy data scientists. You’ll explore data visualization, graph databases, the use of NoSQL, and the data science process. You’ll use the Python language and common Python libraries as you experience firsthand the challenges of dealing with data at scale. Discover how Python allows you to gain insights from data sets so big that they need to be stored on multiple machines, or from data moving so quickly that no single machine can handle it. This book gives you hands-on experience with the most popular Python data science libraries, Scikit-learn and StatsModels. After reading this book, you’ll have the solid foundation you need to start a career in data science. What’s Inside Handling large data Introduction to machine learning Using Python to work with data Writing data science algorithms About the Reader This book assumes you're comfortable reading code in Python or a similar language, such as C, Ruby, or JavaScript. No prior experience with data science is required. About the Authors Davy Cielen, Arno D. B. Meysman, and Mohamed Ali are the founders and managing partners of Optimately and Maiton, where they focus on developing data science projects and solutions in various sectors. Table of Contents Data science in a big data world The data science process Machine learning Handling large data on a single computer First steps in big data Join the NoSQL movement The rise of graph databases Text mining and text analytics Data visualization to the end user

Python for Data Science

Download Python for Data Science PDF Online Free

Author :
Publisher :
ISBN 13 : 9781801547994
Total Pages : 266 pages
Book Rating : 4.5/5 (479 download)

DOWNLOAD NOW!


Book Synopsis Python for Data Science by : Erick Thompson

Download or read book Python for Data Science written by Erick Thompson and published by . This book was released on 2020-10-30 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Introduction to Data Science for Social and Policy Research

Download Introduction to Data Science for Social and Policy Research PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107117410
Total Pages : 317 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Data Science for Social and Policy Research by : Jose Manuel Magallanes Reyes

Download or read book Introduction to Data Science for Social and Policy Research written by Jose Manuel Magallanes Reyes and published by Cambridge University Press. This book was released on 2017-09-21 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive guide provides a step-by-step approach to data collection, cleaning, formatting, and storage, using Python and R.

Python for Data Science For Dummies

Download Python for Data Science For Dummies PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118843983
Total Pages : 432 pages
Book Rating : 4.1/5 (188 download)

DOWNLOAD NOW!


Book Synopsis Python for Data Science For Dummies by : John Paul Mueller

Download or read book Python for Data Science For Dummies written by John Paul Mueller and published by John Wiley & Sons. This book was released on 2015-06-23 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unleash the power of Python for your data analysis projects with For Dummies! Python is the preferred programming language for data scientists and combines the best features of Matlab, Mathematica, and R into libraries specific to data analysis and visualization. Python for Data Science For Dummies shows you how to take advantage of Python programming to acquire, organize, process, and analyze large amounts of information and use basic statistics concepts to identify trends and patterns. You’ll get familiar with the Python development environment, manipulate data, design compelling visualizations, and solve scientific computing challenges as you work your way through this user-friendly guide. Covers the fundamentals of Python data analysis programming and statistics to help you build a solid foundation in data science concepts like probability, random distributions, hypothesis testing, and regression models Explains objects, functions, modules, and libraries and their role in data analysis Walks you through some of the most widely-used libraries, including NumPy, SciPy, BeautifulSoup, Pandas, and MatPlobLib Whether you’re new to data analysis or just new to Python, Python for Data Science For Dummies is your practical guide to getting a grip on data overload and doing interesting things with the oodles of information you uncover.

Data Science Using Python and R

Download Data Science Using Python and R PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119526817
Total Pages : 256 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Data Science Using Python and R by : Chantal D. Larose

Download or read book Data Science Using Python and R written by Chantal D. Larose and published by John Wiley & Sons. This book was released on 2019-04-09 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn data science by doing data science! Data Science Using Python and R will get you plugged into the world’s two most widespread open-source platforms for data science: Python and R. Data science is hot. Bloomberg called data scientist “the hottest job in America.” Python and R are the top two open-source data science tools in the world. In Data Science Using Python and R, you will learn step-by-step how to produce hands-on solutions to real-world business problems, using state-of-the-art techniques. Data Science Using Python and R is written for the general reader with no previous analytics or programming experience. An entire chapter is dedicated to learning the basics of Python and R. Then, each chapter presents step-by-step instructions and walkthroughs for solving data science problems using Python and R. Those with analytics experience will appreciate having a one-stop shop for learning how to do data science using Python and R. Topics covered include data preparation, exploratory data analysis, preparing to model the data, decision trees, model evaluation, misclassification costs, naïve Bayes classification, neural networks, clustering, regression modeling, dimension reduction, and association rules mining. Further, exciting new topics such as random forests and general linear models are also included. The book emphasizes data-driven error costs to enhance profitability, which avoids the common pitfalls that may cost a company millions of dollars. Data Science Using Python and R provides exercises at the end of every chapter, totaling over 500 exercises in the book. Readers will therefore have plenty of opportunity to test their newfound data science skills and expertise. In the Hands-on Analysis exercises, readers are challenged to solve interesting business problems using real-world data sets.

Python for Data Science

Download Python for Data Science PDF Online Free

Author :
Publisher : No Starch Press
ISBN 13 : 1718502214
Total Pages : 271 pages
Book Rating : 4.7/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Python for Data Science by : Yuli Vasiliev

Download or read book Python for Data Science written by Yuli Vasiliev and published by No Starch Press. This book was released on 2022-08-02 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on, real-world introduction to data analysis with the Python programming language, loaded with wide-ranging examples. Python is an ideal choice for accessing, manipulating, and gaining insights from data of all kinds. Python for Data Science introduces you to the Pythonic world of data analysis with a learn-by-doing approach rooted in practical examples and hands-on activities. You’ll learn how to write Python code to obtain, transform, and analyze data, practicing state-of-the-art data processing techniques for use cases in business management, marketing, and decision support. You will discover Python’s rich set of built-in data structures for basic operations, as well as its robust ecosystem of open-source libraries for data science, including NumPy, pandas, scikit-learn, matplotlib, and more. Examples show how to load data in various formats, how to streamline, group, and aggregate data sets, and how to create charts, maps, and other visualizations. Later chapters go in-depth with demonstrations of real-world data applications, including using location data to power a taxi service, market basket analysis to identify items commonly purchased together, and machine learning to predict stock prices.

Data Science from Scratch

Download Data Science from Scratch PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491904399
Total Pages : 336 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Data Science from Scratch by : Joel Grus

Download or read book Data Science from Scratch written by Joel Grus and published by "O'Reilly Media, Inc.". This book was released on 2015-04-14 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Pandas for Everyone

Download Pandas for Everyone PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 : 0134547055
Total Pages : 1093 pages
Book Rating : 4.1/5 (345 download)

DOWNLOAD NOW!


Book Synopsis Pandas for Everyone by : Daniel Y. Chen

Download or read book Pandas for Everyone written by Daniel Y. Chen and published by Addison-Wesley Professional. This book was released on 2017-12-15 with total page 1093 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine datasets and handle missing data Reshape, tidy, and clean datasets so they’re easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large datasets with groupby Leverage Pandas’ advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the “best” Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning

An Introduction to Data Science

Download An Introduction to Data Science PDF Online Free

Author :
Publisher : SAGE Publications
ISBN 13 : 1506377548
Total Pages : 289 pages
Book Rating : 4.5/5 (63 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Data Science by : Jeffrey S. Saltz

Download or read book An Introduction to Data Science written by Jeffrey S. Saltz and published by SAGE Publications. This book was released on 2017-08-25 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Data Science is an easy-to-read data science textbook for those with no prior coding knowledge. It features exercises at the end of each chapter, author-generated tables and visualizations, and R code examples throughout.

Python for Data Analysis

Download Python for Data Analysis PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491957611
Total Pages : 553 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Python for Data Analysis by : Wes McKinney

Download or read book Python for Data Analysis written by Wes McKinney and published by "O'Reilly Media, Inc.". This book was released on 2017-09-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples

Introduction to Data Systems

Download Introduction to Data Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030543714
Total Pages : 828 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Data Systems by : Thomas Bressoud

Download or read book Introduction to Data Systems written by Thomas Bressoud and published by Springer Nature. This book was released on 2020-12-04 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: Encompassing a broad range of forms and sources of data, this textbook introduces data systems through a progressive presentation. Introduction to Data Systems covers data acquisition starting with local files, then progresses to data acquired from relational databases, from REST APIs and through web scraping. It teaches data forms/formats from tidy data to relationally defined sets of tables to hierarchical structure like XML and JSON using data models to convey the structure, operations, and constraints of each data form. The starting point of the book is a foundation in Python programming found in introductory computer science classes or short courses on the language, and so does not require prerequisites of data structures, algorithms, or other courses. This makes the material accessible to students early in their educational career and equips them with understanding and skills that can be applied in computer science, data science/data analytics, and information technology programs as well as for internships and research experiences. This book is accessible to a wide variety of students. By drawing together content normally spread across upper level computer science courses, it offers a single source providing the essentials for data science practitioners. In our increasingly data-centric world, students from all domains will benefit from the “data-aptitude” built by the material in this book.

Introduction to Computation and Programming Using Python, second edition

Download Introduction to Computation and Programming Using Python, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262529629
Total Pages : 466 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Computation and Programming Using Python, second edition by : John V. Guttag

Download or read book Introduction to Computation and Programming Using Python, second edition written by John V. Guttag and published by MIT Press. This book was released on 2016-08-12 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization. This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics.

An Introduction to Statistical Learning

Download An Introduction to Statistical Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031387473
Total Pages : 617 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Statistical Learning by : Gareth James

Download or read book An Introduction to Statistical Learning written by Gareth James and published by Springer Nature. This book was released on 2023-08-01 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.