Characteristic Classes

Download Characteristic Classes PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691081229
Total Pages : 342 pages
Book Rating : 4.0/5 (812 download)

DOWNLOAD NOW!


Book Synopsis Characteristic Classes by : John Willard Milnor

Download or read book Characteristic Classes written by John Willard Milnor and published by Princeton University Press. This book was released on 1974 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.

Introduction to characteristic classes and index theory

Download Introduction to characteristic classes and index theory PDF Online Free

Author :
Publisher :
ISBN 13 : 9789728394127
Total Pages : 219 pages
Book Rating : 4.3/5 (941 download)

DOWNLOAD NOW!


Book Synopsis Introduction to characteristic classes and index theory by : Jean-Pierre Schneiders

Download or read book Introduction to characteristic classes and index theory written by Jean-Pierre Schneiders and published by . This book was released on 2000 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Differential Geometry

Download Differential Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319550845
Total Pages : 358 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry by : Loring W. Tu

Download or read book Differential Geometry written by Loring W. Tu and published by Springer. This book was released on 2017-06-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Introduction to Differential Topology

Download Introduction to Differential Topology PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521284707
Total Pages : 176 pages
Book Rating : 4.2/5 (847 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Differential Topology by : Theodor Bröcker

Download or read book Introduction to Differential Topology written by Theodor Bröcker and published by Cambridge University Press. This book was released on 1982-09-16 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.

From Calculus to Cohomology

Download From Calculus to Cohomology PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521589567
Total Pages : 302 pages
Book Rating : 4.5/5 (895 download)

DOWNLOAD NOW!


Book Synopsis From Calculus to Cohomology by : Ib H. Madsen

Download or read book From Calculus to Cohomology written by Ib H. Madsen and published by Cambridge University Press. This book was released on 1997-03-13 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook on cohomology and curvature with emphasis on applications.

Lectures on Chern-Weil Theory and Witten Deformations

Download Lectures on Chern-Weil Theory and Witten Deformations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812386580
Total Pages : 131 pages
Book Rating : 4.8/5 (123 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Chern-Weil Theory and Witten Deformations by : Weiping Zhang

Download or read book Lectures on Chern-Weil Theory and Witten Deformations written by Weiping Zhang and published by World Scientific. This book was released on 2001 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to ShiingOCoshen Chern and Andr(r) Weil, as well as a proof of the GaussOCoBonnetOCoChern theorem based on the MathaiOCoQuillen construction of Thom forms; the second part presents analytic proofs of the Poincar(r)OCoHopf index formula, as well as the Morse inequalities based on deformations introduced by Edward Witten. Contents: ChernOCoWeil Theory for Characteristic Classes; Bott and DuistermaatOCoHeckman Formulas; GaussOCoBonnetOCoChern Theorem; Poincar(r)OCoHopf Index Formula: An Analytic Proof; Morse Inequalities: An Analytic Proof; ThomOCoSmale and Witten Complexes; Atiyah Theorem on Kervaire Semi-characteristic. Readership: Graduate students and researchers in differential geometry, topology and mathematical physics."

Invariance Theory

Download Invariance Theory PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780849378744
Total Pages : 534 pages
Book Rating : 4.3/5 (787 download)

DOWNLOAD NOW!


Book Synopsis Invariance Theory by : Peter B. Gilkey

Download or read book Invariance Theory written by Peter B. Gilkey and published by CRC Press. This book was released on 1994-12-22 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas, the Gauss-Bonnet theorem for a manifold with smooth boundary, and the geometrical theorem for a manifold with smooth boundary. The author uses invariance theory to identify the integrand of the index theorem for classical elliptic complexes with the invariants of the heat equation.

A Concise Course in Algebraic Topology

Download A Concise Course in Algebraic Topology PDF Online Free

Author :
Publisher : University of Chicago Press
ISBN 13 : 9780226511832
Total Pages : 262 pages
Book Rating : 4.5/5 (118 download)

DOWNLOAD NOW!


Book Synopsis A Concise Course in Algebraic Topology by : J. P. May

Download or read book A Concise Course in Algebraic Topology written by J. P. May and published by University of Chicago Press. This book was released on 1999-09 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Fibre Bundles

Download Fibre Bundles PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475740085
Total Pages : 333 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Fibre Bundles by : D. Husemöller

Download or read book Fibre Bundles written by D. Husemöller and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of a fibre bundle first arose out of questions posed in the 1930s on the topology and geometry of manifolds. By the year 1950 the defini tion of fibre bundle had been clearly formulated, the homotopy classifica tion of fibre bundles achieved, and the theory of characteristic classes of fibre bundles developed by several mathematicians, Chern, Pontrjagin, Stiefel, and Whitney. Steenrod's book, which appeared in 1950, gave a coherent treatment of the subject up to that time. About 1955 Milnor gave a construction of a universal fibre bundle for any topological group. This construction is also included in Part I along with an elementary proof that the bundle is universal. During the five years from 1950 to 1955, Hirzebruch clarified the notion of characteristic class and used it to prove a general Riemann-Roch theorem for algebraic varieties. This was published in his Ergebnisse Monograph. A systematic development of characteristic classes and their applications to manifolds is given in Part III and is based on the approach of Hirze bruch as modified by Grothendieck.

Lecture Notes in Algebraic Topology

Download Lecture Notes in Algebraic Topology PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470473682
Total Pages : 385 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Lecture Notes in Algebraic Topology by : James F. Davis

Download or read book Lecture Notes in Algebraic Topology written by James F. Davis and published by American Mathematical Society. This book was released on 2023-05-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.

K-theory

Download K-theory PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429973179
Total Pages : 181 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis K-theory by : Michael Atiyah

Download or read book K-theory written by Michael Atiyah and published by CRC Press. This book was released on 2018-03-05 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on the course of lectures I gave at Harvard in the fall of 1964. They constitute a self-contained account of vector bundles and K-theory assuming only the rudiments of point-set topology and linear algebra. One of the features of the treatment is that no use is made of ordinary homology or cohomology theory. In fact, rational cohomology is defined in terms of K-theory.The theory is taken as far as the solution of the Hopf invariant problem and a start is mode on the J-homomorphism. In addition to the lecture notes proper, two papers of mine published since 1964 have been reproduced at the end. The first, dealing with operations, is a natural supplement to the material in Chapter III. It provides an alternative approach to operations which is less slick but more fundamental than the Grothendieck method of Chapter III, and it relates operations and filtration. Actually, the lectures deal with compact spaces, not cell-complexes, and so the skeleton-filtration does not figure in the notes. The second paper provides a new approach to K-theory and so fills an obvious gap in the lecture notes.

Atiyah-Singer Index Theorem - An Introduction

Download Atiyah-Singer Index Theorem - An Introduction PDF Online Free

Author :
Publisher : Hindustan Book Agency
ISBN 13 : 9789380250540
Total Pages : 0 pages
Book Rating : 4.2/5 (55 download)

DOWNLOAD NOW!


Book Synopsis Atiyah-Singer Index Theorem - An Introduction by : Amiya Mukherjee

Download or read book Atiyah-Singer Index Theorem - An Introduction written by Amiya Mukherjee and published by Hindustan Book Agency. This book was released on 2013-10-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a thorough introduction to the Atiyah-Singer index theorem for elliptic operators on compact manifolds without boundary. The main theme is the classical index theorem and some of its applications, but not the subsequent developments and simplifications of the theory. The book is designed for a complete proof of the K-theoretic index theorem and its representation in terms of cohomological characteristic classes.

Vector Fields on Singular Varieties

Download Vector Fields on Singular Varieties PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642052045
Total Pages : 242 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Vector Fields on Singular Varieties by : Jean-Paul Brasselet

Download or read book Vector Fields on Singular Varieties written by Jean-Paul Brasselet and published by Springer Science & Business Media. This book was released on 2009-12-17 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vector fields on manifolds play a major role in mathematics and other sciences. In particular, the Poincaré-Hopf index theorem gives rise to the theory of Chern classes, key manifold-invariants in geometry and topology. It is natural to ask what is the ‘good’ notion of the index of a vector field, and of Chern classes, if the underlying space becomes singular. The question has been explored by several authors resulting in various answers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph.

An Introduction to Manifolds

Download An Introduction to Manifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441974008
Total Pages : 426 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Manifolds by : Loring W. Tu

Download or read book An Introduction to Manifolds written by Loring W. Tu and published by Springer Science & Business Media. This book was released on 2010-10-05 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

The Theory of Characteristic Classes

Download The Theory of Characteristic Classes PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 326 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis The Theory of Characteristic Classes by : John Willard Milnor

Download or read book The Theory of Characteristic Classes written by John Willard Milnor and published by . This book was released on 1959 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt:

From Differential Geometry to Non-commutative Geometry and Topology

Download From Differential Geometry to Non-commutative Geometry and Topology PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030284336
Total Pages : 406 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis From Differential Geometry to Non-commutative Geometry and Topology by : Neculai S. Teleman

Download or read book From Differential Geometry to Non-commutative Geometry and Topology written by Neculai S. Teleman and published by Springer Nature. This book was released on 2019-11-10 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide a friendly introduction to non-commutative geometry. It studies index theory from a classical differential geometry perspective up to the point where classical differential geometry methods become insufficient. It then presents non-commutative geometry as a natural continuation of classical differential geometry. It thereby aims to provide a natural link between classical differential geometry and non-commutative geometry. The book shows that the index formula is a topological statement, and ends with non-commutative topology.

Higher Index Theory

Download Higher Index Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108853110
Total Pages : 595 pages
Book Rating : 4.1/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Higher Index Theory by : Rufus Willett

Download or read book Higher Index Theory written by Rufus Willett and published by Cambridge University Press. This book was released on 2020-07-02 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Index theory studies the solutions to differential equations on geometric spaces, their relation to the underlying geometry and topology, and applications to physics. If the space of solutions is infinite dimensional, it becomes necessary to generalise the classical Fredholm index using tools from the K-theory of operator algebras. This leads to higher index theory, a rapidly developing subject with connections to noncommutative geometry, large-scale geometry, manifold topology and geometry, and operator algebras. Aimed at geometers, topologists and operator algebraists, this book takes a friendly and concrete approach to this exciting theory, focusing on the main conjectures in the area and their applications outside of it. A well-balanced combination of detailed introductory material (with exercises), cutting-edge developments and references to the wider literature make this a valuable guide to this active area for graduate students and experts alike.