Introduction to Bayesian Tracking and Particle Filters

Download Introduction to Bayesian Tracking and Particle Filters PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031322428
Total Pages : 124 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Bayesian Tracking and Particle Filters by : Lawrence D. Stone

Download or read book Introduction to Bayesian Tracking and Particle Filters written by Lawrence D. Stone and published by Springer Nature. This book was released on 2023-05-31 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a quick but insightful introduction to Bayesian tracking and particle filtering for a person who has some background in probability and statistics and wishes to learn the basics of single-target tracking. It also introduces the reader to multiple target tracking by presenting useful approximate methods that are easy to implement compared to full-blown multiple target trackers. The book presents the basic concepts of Bayesian inference and demonstrates the power of the Bayesian method through numerous applications of particle filters to tracking and smoothing problems. It emphasizes target motion models that incorporate knowledge about the target’s behavior in a natural fashion rather than assumptions made for mathematical convenience. The background provided by this book allows a person to quickly become a productive member of a project team using Bayesian filtering and to develop new methods and techniques for problems the team may face.

Beyond the Kalman Filter: Particle Filters for Tracking Applications

Download Beyond the Kalman Filter: Particle Filters for Tracking Applications PDF Online Free

Author :
Publisher : Artech House
ISBN 13 : 9781580538510
Total Pages : 328 pages
Book Rating : 4.5/5 (385 download)

DOWNLOAD NOW!


Book Synopsis Beyond the Kalman Filter: Particle Filters for Tracking Applications by : Branko Ristic

Download or read book Beyond the Kalman Filter: Particle Filters for Tracking Applications written by Branko Ristic and published by Artech House. This book was released on 2003-12-01 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: For most tracking applications the Kalman filter is reliable and efficient, but it is limited to a relatively restricted class of linear Gaussian problems. To solve problems beyond this restricted class, particle filters are proving to be dependable methods for stochastic dynamic estimation. Packed with 867 equations, this cutting-edge book introduces the latest advances in particle filter theory, discusses their relevance to defense surveillance systems, and examines defense-related applications of particle filters to nonlinear and non-Gaussian problems. With this hands-on guide, you can develop more accurate and reliable nonlinear filter designs and more precisely predict the performance of these designs. You can also apply particle filters to tracking a ballistic object, detection and tracking of stealthy targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging (bearings-only tracking) of maneuvering targets, range-only tracking, terrain-aided tracking of ground vehicles, and group and extended object tracking.

Bayesian Filtering and Smoothing

Download Bayesian Filtering and Smoothing PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110703065X
Total Pages : 255 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Filtering and Smoothing by : Simo Särkkä

Download or read book Bayesian Filtering and Smoothing written by Simo Särkkä and published by Cambridge University Press. This book was released on 2013-09-05 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.

Particle Filters for Random Set Models

Download Particle Filters for Random Set Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461463165
Total Pages : 184 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Particle Filters for Random Set Models by : Branko Ristic

Download or read book Particle Filters for Random Set Models written by Branko Ristic and published by Springer Science & Business Media. This book was released on 2013-04-15 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based on the Monte Carlo statistical method. Although the resulting algorithms, known as particle filters, have been around for more than a decade, the recent theoretical developments of sequential Bayesian estimation in the framework of random set theory have provided new opportunities which are not widely known and are covered in this book. This book is ideal for graduate students, researchers, scientists and engineers interested in Bayesian estimation.

Bayesian Estimation and Tracking

Download Bayesian Estimation and Tracking PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118287800
Total Pages : 400 pages
Book Rating : 4.1/5 (182 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Estimation and Tracking by : Anton J. Haug

Download or read book Bayesian Estimation and Tracking written by Anton J. Haug and published by John Wiley & Sons. This book was released on 2012-05-29 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical approach to estimating and tracking dynamic systems in real-worl applications Much of the literature on performing estimation for non-Gaussian systems is short on practical methodology, while Gaussian methods often lack a cohesive derivation. Bayesian Estimation and Tracking addresses the gap in the field on both accounts, providing readers with a comprehensive overview of methods for estimating both linear and nonlinear dynamic systems driven by Gaussian and non-Gaussian noices. Featuring a unified approach to Bayesian estimation and tracking, the book emphasizes the derivation of all tracking algorithms within a Bayesian framework and describes effective numerical methods for evaluating density-weighted integrals, including linear and nonlinear Kalman filters for Gaussian-weighted integrals and particle filters for non-Gaussian cases. The author first emphasizes detailed derivations from first principles of eeach estimation method and goes on to use illustrative and detailed step-by-step instructions for each method that makes coding of the tracking filter simple and easy to understand. Case studies are employed to showcase applications of the discussed topics. In addition, the book supplies block diagrams for each algorithm, allowing readers to develop their own MATLAB® toolbox of estimation methods. Bayesian Estimation and Tracking is an excellent book for courses on estimation and tracking methods at the graduate level. The book also serves as a valuable reference for research scientists, mathematicians, and engineers seeking a deeper understanding of the topics.

An Introduction to Sequential Monte Carlo

Download An Introduction to Sequential Monte Carlo PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030478459
Total Pages : 390 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Sequential Monte Carlo by : Nicolas Chopin

Download or read book An Introduction to Sequential Monte Carlo written by Nicolas Chopin and published by Springer Nature. This book was released on 2020-10-01 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.

Random Finite Sets for Robot Mapping & SLAM

Download Random Finite Sets for Robot Mapping & SLAM PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642213898
Total Pages : 161 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Random Finite Sets for Robot Mapping & SLAM by : John Stephen Mullane

Download or read book Random Finite Sets for Robot Mapping & SLAM written by John Stephen Mullane and published by Springer Science & Business Media. This book was released on 2011-05-19 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: The monograph written by John Mullane, Ba-Ngu Vo, Martin Adams and Ba-Tuong Vo is devoted to the field of autonomous robot systems, which have been receiving a great deal of attention by the research community in the latest few years. The contents are focused on the problem of representing the environment and its uncertainty in terms of feature based maps. Random Finite Sets are adopted as the fundamental tool to represent a map, and a general framework is proposed for feature management, data association and state estimation. The approaches are tested in a number of experiments on both ground based and marine based facilities.

Digital Signal Processing with Matlab Examples, Volume 3

Download Digital Signal Processing with Matlab Examples, Volume 3 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811025401
Total Pages : 443 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Digital Signal Processing with Matlab Examples, Volume 3 by : Jose Maria Giron-Sierra

Download or read book Digital Signal Processing with Matlab Examples, Volume 3 written by Jose Maria Giron-Sierra and published by Springer. This book was released on 2016-11-21 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the third volume in a trilogy on modern Signal Processing. The three books provide a concise exposition of signal processing topics, and a guide to support individual practical exploration based on MATLAB programs. This book includes MATLAB codes to illustrate each of the main steps of the theory, offering a self-contained guide suitable for independent study. The code is embedded in the text, helping readers to put into practice the ideas and methods discussed. The book primarily focuses on filter banks, wavelets, and images. While the Fourier transform is adequate for periodic signals, wavelets are more suitable for other cases, such as short-duration signals: bursts, spikes, tweets, lung sounds, etc. Both Fourier and wavelet transforms decompose signals into components. Further, both are also invertible, so the original signals can be recovered from their components. Compressed sensing has emerged as a promising idea. One of the intended applications is networked devices or sensors, which are now becoming a reality; accordingly, this topic is also addressed. A selection of experiments that demonstrate image denoising applications are also included. In the interest of reader-friendliness, the longer programs have been grouped in an appendix; further, a second appendix on optimization has been added to supplement the content of the last chapter.

Bayesian Inference of State Space Models

Download Bayesian Inference of State Space Models PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303076124X
Total Pages : 503 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Inference of State Space Models by : Kostas Triantafyllopoulos

Download or read book Bayesian Inference of State Space Models written by Kostas Triantafyllopoulos and published by Springer Nature. This book was released on 2021-11-12 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Inference of State Space Models: Kalman Filtering and Beyond offers a comprehensive introduction to Bayesian estimation and forecasting for state space models. The celebrated Kalman filter, with its numerous extensions, takes centre stage in the book. Univariate and multivariate models, linear Gaussian, non-linear and non-Gaussian models are discussed with applications to signal processing, environmetrics, economics and systems engineering. Over the past years there has been a growing literature on Bayesian inference of state space models, focusing on multivariate models as well as on non-linear and non-Gaussian models. The availability of time series data in many fields of science and industry on the one hand, and the development of low-cost computational capabilities on the other, have resulted in a wealth of statistical methods aimed at parameter estimation and forecasting. This book brings together many of these methods, presenting an accessible and comprehensive introduction to state space models. A number of data sets from different disciplines are used to illustrate the methods and show how they are applied in practice. The R package BTSA, created for the book, includes many of the algorithms and examples presented. The book is essentially self-contained and includes a chapter summarising the prerequisites in undergraduate linear algebra, probability and statistics. An up-to-date and complete account of state space methods, illustrated by real-life data sets and R code, this textbook will appeal to a wide range of students and scientists, notably in the disciplines of statistics, systems engineering, signal processing, data science, finance and econometrics. With numerous exercises in each chapter, and prerequisite knowledge conveniently recalled, it is suitable for upper undergraduate and graduate courses.

Autonomic and Trusted Computing

Download Autonomic and Trusted Computing PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642165753
Total Pages : 342 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Autonomic and Trusted Computing by : Bing Xie

Download or read book Autonomic and Trusted Computing written by Bing Xie and published by Springer Science & Business Media. This book was released on 2010-10-08 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computing systems including hardware, software, communication, and networks are becoming increasingly large and heterogeneous. In short, they have become - creasingly complex. Such complexity is getting even more critical with the ubiquitous permeation of embedded devices and other pervasive systems. To cope with the growing and ubiquitous complexity, autonomic computing (AC) focuses on self-manageable computing and communication systems that exhibit self-awareness, self-configuration, self-optimization, self-healing, self-protection and other self-* properties to the maximum extent possible without human intervention or guidance. Organic computing (OC) additionally addresses adaptability, robustness, and c- trolled emergence as well as nature-inspired concepts for self-organization. Any autonomic or organic system must be trustworthy to avoid the risk of losing control and retain confidence that the system will not fail. Trust and/or distrust relationships in the Internet and in pervasive infrastructures are key factors to enable dynamic interaction and cooperation of various users, systems, and services. Trusted/ trustworthy computing (TC) aims at making computing and communication systems––as well as services––available, predictable, traceable, controllable, asse- able, sustainable, dependable, persistent, security/privacy protectable, etc. A series of grand challenges exists to achieve practical autonomic or organic s- tems with truly trustworthy services. Started in 2005, ATC conferences have been held at Nagasaki (Japan), Vienna (Austria), Three Gorges (China), Hong Kong (China), Oslo (Norway) and Brisbane (Australia). The 2010 proceedings contain the papers presented at the 7th International Conference on Autonomic and Trusted Computing (ATC 2010), held in Xi’an, China, October 26–29, 2010.

Autonomous Robot Vehicles

Download Autonomous Robot Vehicles PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461389976
Total Pages : 478 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Autonomous Robot Vehicles by : Ingemar J. Cox

Download or read book Autonomous Robot Vehicles written by Ingemar J. Cox and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Autonomous robot vehicles are vehicles capable of intelligent motion and action without requiring either a guide or teleoperator control. The recent surge of interest in this subject will grow even grow further as their potential applications increase. Autonomous vehicles are currently being studied for use as reconnaissance/exploratory vehicles for planetary exploration, undersea, land and air environments, remote repair and maintenance, material handling systems for offices and factories, and even intelligent wheelchairs for the disabled. This reference is the first to deal directly with the unique and fundamental problems and recent progress associated with autonomous vehicles. The editors have assembled and combined significant material from a multitude of sources, and, in effect, now conviniently provide a coherent organization to a previously scattered and ill-defined field.

Sequential Monte Carlo Methods in Practice

Download Sequential Monte Carlo Methods in Practice PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475734379
Total Pages : 590 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Sequential Monte Carlo Methods in Practice by : Arnaud Doucet

Download or read book Sequential Monte Carlo Methods in Practice written by Arnaud Doucet and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Advances in Swarm Intelligence

Download Advances in Swarm Intelligence PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319410008
Total Pages : 662 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Advances in Swarm Intelligence by : Ying Tan

Download or read book Advances in Swarm Intelligence written by Ying Tan and published by Springer. This book was released on 2016-09-05 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set LNCS 9712 and LNCS 9713 constitutes the refereed proceedings of the 7th International Conference on Swarm Intelligence, ICSI 2016, held in Bali, Indonesia, in June 2016. The 130 revised regular papers presented were carefully reviewed and selected from 231 submissions. The papers are organized in 22 cohesive sections covering major topics of swarm intelligence and related areas such as trend and models of swarm intelligence research; novel swarm-based optimization algorithms; swarming behaviour; some swarm intelligence algorithms and their applications; hybrid search optimization; particle swarm optimization; PSO applications; ant colony optimization; brain storm optimization; fireworks algorithms; multi-objective optimization; large-scale global optimization; biometrics; scheduling and planning; machine learning methods; clustering algorithm; classification; image classification and encryption; data mining; sensor networks and social networks; neural networks; swarm intelligence in management decision making and operations research; robot control; swarm robotics; intelligent energy and communications systems; and intelligent and interactive and tutoring systems.

Fundamentals of Object Tracking

Download Fundamentals of Object Tracking PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521876281
Total Pages : 389 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Object Tracking by :

Download or read book Fundamentals of Object Tracking written by and published by Cambridge University Press. This book was released on 2011-07-28 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces object tracking algorithms from a unified, recursive Bayesian perspective, along with performance bounds and illustrative examples.

Nonlinear Data Assimilation

Download Nonlinear Data Assimilation PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319183478
Total Pages : 130 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Data Assimilation by : Peter Jan Van Leeuwen

Download or read book Nonlinear Data Assimilation written by Peter Jan Van Leeuwen and published by Springer. This book was released on 2015-07-22 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.

Introduction and Implementations of the Kalman Filter

Download Introduction and Implementations of the Kalman Filter PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 1838805362
Total Pages : 130 pages
Book Rating : 4.8/5 (388 download)

DOWNLOAD NOW!


Book Synopsis Introduction and Implementations of the Kalman Filter by : Felix Govaers

Download or read book Introduction and Implementations of the Kalman Filter written by Felix Govaers and published by BoD – Books on Demand. This book was released on 2019-05-22 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sensor data fusion is the process of combining error-prone, heterogeneous, incomplete, and ambiguous data to gather a higher level of situational awareness. In principle, all living creatures are fusing information from their complementary senses to coordinate their actions and to detect and localize danger. In sensor data fusion, this process is transferred to electronic systems, which rely on some "awareness" of what is happening in certain areas of interest. By means of probability theory and statistics, it is possible to model the relationship between the state space and the sensor data. The number of ingredients of the resulting Kalman filter is limited, but its applications are not.

Feynman-Kac Formulae

Download Feynman-Kac Formulae PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387202686
Total Pages : 584 pages
Book Rating : 4.2/5 (26 download)

DOWNLOAD NOW!


Book Synopsis Feynman-Kac Formulae by : Pierre Del Moral

Download or read book Feynman-Kac Formulae written by Pierre Del Moral and published by Springer Science & Business Media. This book was released on 2004-03-30 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text takes readers in a clear and progressive format from simple to recent and advanced topics in pure and applied probability such as contraction and annealed properties of non-linear semi-groups, functional entropy inequalities, empirical process convergence, increasing propagations of chaos, central limit, and Berry Esseen type theorems as well as large deviation principles for strong topologies on path-distribution spaces. Topics also include a body of powerful branching and interacting particle methods.