Intersections of Hirzebruch–Zagier Divisors and CM Cycles

Download Intersections of Hirzebruch–Zagier Divisors and CM Cycles PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642239781
Total Pages : 146 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Intersections of Hirzebruch–Zagier Divisors and CM Cycles by : Benjamin Howard

Download or read book Intersections of Hirzebruch–Zagier Divisors and CM Cycles written by Benjamin Howard and published by Springer Science & Business Media. This book was released on 2012-01-06 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch-Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.

Higher Ramanujan Equations and Periods of Abelian Varieties

Download Higher Ramanujan Equations and Periods of Abelian Varieties PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 147046019X
Total Pages : 158 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Higher Ramanujan Equations and Periods of Abelian Varieties by : Tiago J. Fonseca

Download or read book Higher Ramanujan Equations and Periods of Abelian Varieties written by Tiago J. Fonseca and published by American Mathematical Society. This book was released on 2023-01-18 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: View the abstract.

Sage for Undergraduates

Download Sage for Undergraduates PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470461552
Total Pages : 158 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Sage for Undergraduates by : Gregory V. Bard

Download or read book Sage for Undergraduates written by Gregory V. Bard and published by American Mathematical Society. This book was released on 2022-09-26 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the open-source and free alternative to expensive software like Maple™, Mathematica®, and MATLAB®, Sage offers anyone with a web browser the ability to use cutting-edge mathematical software and share the results with others, often with stunning graphics. This book is a gentle introduction to Sage for undergraduate students during Calculus II, Multivariate Calculus, Differential Equations, Linear Algebra, Math Modeling, or Operations Research. This book assumes no background in programming, but the reader who finishes the book will have learned about 60 percent of a first semester computer science course, including much of the Python programming language. The audience is not only math majors, but also physics, engineering, environmental science, finance, chemistry, economics, data science, and computer science majors. Many of the book's examples are drawn from those fields. Filled with “challenges” for the students to test their progress, the book is also ideal for self-study. What's New in the Second Edition: In 2019, Sage transitioned from Python 2 to Python 3, which changed the syntax in several significant ways, including for the print command. All the examples in this book have been rewritten to be compatible with Python 3. Moreover, every code block longer than four lines has been placed in an archive on the book's website http://www.sage-for-undergraduates.org that is maintained by the author, so that the students won't have to retype the code! Other additions include… The number of “challenges” for the students to test their own progress in learning Sage has roughly doubled, which will be a great boon for self-study.There's approximately 150 pages of new content, including: New projects on Leontief Input-Output Analysis and on Environmental ScienceNew sections on Complex Numbers and Complex Analysis, on SageTex, and on solving problems via Monte-Carlo Simulations.The first three sections of Chapter 1 have been completely rewritten to give absolute beginners a smoother transition into Sage.

Algebraic Groups and Arithmetic

Download Algebraic Groups and Arithmetic PDF Online Free

Author :
Publisher : Narosa Publishing House
ISBN 13 :
Total Pages : 590 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Groups and Arithmetic by : S. G. Dani

Download or read book Algebraic Groups and Arithmetic written by S. G. Dani and published by Narosa Publishing House. This book was released on 2004 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Major advances have been made in recent decades in algebraic groups and arithmetic. The School of Mathematics of the Tata Institute of Fundamental Research, under the leadership of Professor M. S. Raghunathan, has been a significant contributor to this progress. This collection of papers grew out of a conference held in honor of Professor Raghunathan's sixtieth birthday. The volume contains original papers contributed by leading experts. Topics covered include group-theoretic aspects, Diophantine approximation, modular forms, representation theory, interactions with topology and geometry, and dynamics on homogeneous spaces. Particularly noteworthy are two expository articles on Professor Raghunathan's work by the late Armand Borel and Gopal Prasad. The book is suitable for graduate students and researchers interested in algebra and algebraic geometry.

Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change

Download Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3034803516
Total Pages : 264 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change by : Jayce Getz

Download or read book Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change written by Jayce Getz and published by Springer Science & Business Media. This book was released on 2012-03-28 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adèlic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces.

The Gross-Zagier Formula on Shimura Curves

Download The Gross-Zagier Formula on Shimura Curves PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691155925
Total Pages : 266 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis The Gross-Zagier Formula on Shimura Curves by : Xinyi Yuan

Download or read book The Gross-Zagier Formula on Shimura Curves written by Xinyi Yuan and published by Princeton University Press. This book was released on 2013 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof of its coherent analogue: the Waldspurger formula, which relates the periods of integrals and the special values of L-series by means of Weil representations. The Gross-Zagier formula is then reformulated in terms of incoherent Weil representations and Kudla's generating series. Using Arakelov theory and the modularity of Kudla's generating series, the proof of the Gross-Zagier formula is reduced to local formulas. The Gross-Zagier Formula on Shimura Curves will be of great use to students wishing to enter this area and to those already working in it.

The Geometry of Algebraic Cycles

Download The Geometry of Algebraic Cycles PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821851918
Total Pages : 202 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Algebraic Cycles by : Reza Akhtar

Download or read book The Geometry of Algebraic Cycles written by Reza Akhtar and published by American Mathematical Soc.. This book was released on 2010 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of algebraic cycles has its roots in the study of divisors, extending as far back as the nineteenth century. Since then, and in particular in recent years, algebraic cycles have made a significant impact on many fields of mathematics, among them number theory, algebraic geometry, and mathematical physics. The present volume contains articles on all of the above aspects of algebraic cycles. It also contains a mixture of both research papers and expository articles, so that it would be of interest to both experts and beginners in the field.

Modular Forms, a Computational Approach

Download Modular Forms, a Computational Approach PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821839608
Total Pages : 290 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Modular Forms, a Computational Approach by : William A. Stein

Download or read book Modular Forms, a Computational Approach written by William A. Stein and published by American Mathematical Soc.. This book was released on 2007-02-13 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.

Moduli of Curves

Download Moduli of Curves PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387227377
Total Pages : 381 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Moduli of Curves by : Joe Harris

Download or read book Moduli of Curves written by Joe Harris and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to a rich and fascinating subject: algebraic curves and how they vary in families. Providing a broad but compact overview of the field, this book is accessible to readers with a modest background in algebraic geometry. It develops many techniques, including Hilbert schemes, deformation theory, stable reduction, intersection theory, and geometric invariant theory, with the focus on examples and applications arising in the study of moduli of curves. From such foundations, the book goes on to show how moduli spaces of curves are constructed, illustrates typical applications with the proofs of the Brill-Noether and Gieseker-Petri theorems via limit linear series, and surveys the most important results about their geometry ranging from irreducibility and complete subvarieties to ample divisors and Kodaira dimension. With over 180 exercises and 70 figures, the book also provides a concise introduction to the main results and open problems about important topics which are not covered in detail.

Computing the Continuous Discretely

Download Computing the Continuous Discretely PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493929690
Total Pages : 295 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Computing the Continuous Discretely by : Matthias Beck

Download or read book Computing the Continuous Discretely written by Matthias Beck and published by Springer. This book was released on 2015-11-14 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE

Number Theory

Download Number Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387298511
Total Pages : 392 pages
Book Rating : 4.2/5 (985 download)

DOWNLOAD NOW!


Book Synopsis Number Theory by : W.A. Coppel

Download or read book Number Theory written by W.A. Coppel and published by Springer Science & Business Media. This book was released on 2006-02-02 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume book is a modern introduction to the theory of numbers, emphasizing its connections with other branches of mathematics. Part A is accessible to first-year undergraduates and deals with elementary number theory. Part B is more advanced and gives the reader an idea of the scope of mathematics today. The connecting theme is the theory of numbers. By exploring its many connections with other branches a broad picture is obtained. The book contains a treasury of proofs, several of which are gems seldom seen in number theory books.

Arbeitstagung Bonn, 1984

Download Arbeitstagung Bonn, 1984 PDF Online Free

Author :
Publisher : Springer
ISBN 13 :
Total Pages : 514 pages
Book Rating : 4.:/5 (318 download)

DOWNLOAD NOW!


Book Synopsis Arbeitstagung Bonn, 1984 by : Friedrich Hirzebruch

Download or read book Arbeitstagung Bonn, 1984 written by Friedrich Hirzebruch and published by Springer. This book was released on 1985 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt:

A Classical Invitation to Algebraic Numbers and Class Fields

Download A Classical Invitation to Algebraic Numbers and Class Fields PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461299500
Total Pages : 344 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis A Classical Invitation to Algebraic Numbers and Class Fields by : Harvey Cohn

Download or read book A Classical Invitation to Algebraic Numbers and Class Fields written by Harvey Cohn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Artin's 1932 Göttingen Lectures on Class Field Theory" and "Connections between Algebrac Number Theory and Integral Matrices"

Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors

Download Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540458727
Total Pages : 159 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors by : Jan H. Bruinier

Download or read book Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors written by Jan H. Bruinier and published by Springer. This book was released on 2004-10-11 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: Around 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2,n)$. These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. The fact that the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them interesting for geometric and arithmetic applications. In the present text the Borcherds' construction is extended to Maass wave forms and is used to study the Chern classes of Heegner divisors. A converse theorem for the lifting is proved.

Geometry of Continued Fractions

Download Geometry of Continued Fractions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642393683
Total Pages : 409 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Geometry of Continued Fractions by : Oleg Karpenkov

Download or read book Geometry of Continued Fractions written by Oleg Karpenkov and published by Springer Science & Business Media. This book was released on 2013-08-15 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.

Manifolds and Modular Forms

Download Manifolds and Modular Forms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3663107264
Total Pages : 216 pages
Book Rating : 4.6/5 (631 download)

DOWNLOAD NOW!


Book Synopsis Manifolds and Modular Forms by : Friedrich Hirzebruch

Download or read book Manifolds and Modular Forms written by Friedrich Hirzebruch and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the theory of elliptic genera due to Ochanine, Landweber, Stong, and others. The theory describes a new cobordism invariant for manifolds in terms of modular forms. The book evolved from notes of a course given at the University of Bonn. After providing some background material elliptic genera are constructed, including the classical genera signature and the index of the Dirac operator as special cases. Various properties of elliptic genera are discussed, especially their behaviour in fibre bundles and rigidity for group actions. For stably almost complex manifolds the theory is extended to elliptic genera of higher level. The text is in most parts self-contained. The results are illustrated by explicit examples and by comparison with well-known theorems. The relevant aspects of the theory of modular forms are derived in a seperate appendix, providing also a useful reference for mathematicians working in this field.

B-Model Gromov-Witten Theory

Download B-Model Gromov-Witten Theory PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319942204
Total Pages : 635 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis B-Model Gromov-Witten Theory by : Emily Clader

Download or read book B-Model Gromov-Witten Theory written by Emily Clader and published by Springer. This book was released on 2019-04-08 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects various perspectives, contributed by both mathematicians and physicists, on the B-model and its role in mirror symmetry. Mirror symmetry is an active topic of research in both the mathematics and physics communities, but among mathematicians, the “A-model” half of the story remains much better-understood than the B-model. This book aims to address that imbalance. It begins with an overview of several methods by which mirrors have been constructed, and from there, gives a thorough account of the “BCOV” B-model theory from a physical perspective; this includes the appearance of such phenomena as the holomorphic anomaly equation and connections to number theory via modularity. Following a mathematical exposition of the subject of quantization, the remainder of the book is devoted to the B-model from a mathematician’s point-of-view, including such topics as polyvector fields and primitive forms, Givental’s ancestor potential, and integrable systems.