Interior-point Polynomial Algorithms in Convex Programming

Download Interior-point Polynomial Algorithms in Convex Programming PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611970791
Total Pages : 414 pages
Book Rating : 4.9/5 (77 download)

DOWNLOAD NOW!


Book Synopsis Interior-point Polynomial Algorithms in Convex Programming by : Yurii Nesterov

Download or read book Interior-point Polynomial Algorithms in Convex Programming written by Yurii Nesterov and published by SIAM. This book was released on 1994-01-01 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.

Interior Point Approach to Linear, Quadratic and Convex Programming

Download Interior Point Approach to Linear, Quadratic and Convex Programming PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401111340
Total Pages : 214 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Interior Point Approach to Linear, Quadratic and Convex Programming by : D. den Hertog

Download or read book Interior Point Approach to Linear, Quadratic and Convex Programming written by D. den Hertog and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the rapidly developing field of interior point methods (IPMs). An extensive analysis is given of path-following methods for linear programming, quadratic programming and convex programming. These methods, which form a subclass of interior point methods, follow the central path, which is an analytic curve defined by the problem. Relatively simple and elegant proofs for polynomiality are given. The theory is illustrated using several explicit examples. Moreover, an overview of other classes of IPMs is given. It is shown that all these methods rely on the same notion as the path-following methods: all these methods use the central path implicitly or explicitly as a reference path to go to the optimum. For specialists in IPMs as well as those seeking an introduction to IPMs. The book is accessible to any mathematician with basic mathematical programming knowledge.

A Mathematical View of Interior-point Methods in Convex Optimization

Download A Mathematical View of Interior-point Methods in Convex Optimization PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898718812
Total Pages : 124 pages
Book Rating : 4.7/5 (188 download)

DOWNLOAD NOW!


Book Synopsis A Mathematical View of Interior-point Methods in Convex Optimization by : James Renegar

Download or read book A Mathematical View of Interior-point Methods in Convex Optimization written by James Renegar and published by SIAM. This book was released on 2001-01-01 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.

Algorithms for Convex Optimization

Download Algorithms for Convex Optimization PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108633994
Total Pages : 314 pages
Book Rating : 4.1/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Algorithms for Convex Optimization by : Nisheeth K. Vishnoi

Download or read book Algorithms for Convex Optimization written by Nisheeth K. Vishnoi and published by Cambridge University Press. This book was released on 2021-10-07 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.

Primal-dual Interior-Point Methods

Download Primal-dual Interior-Point Methods PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611971453
Total Pages : 309 pages
Book Rating : 4.9/5 (714 download)

DOWNLOAD NOW!


Book Synopsis Primal-dual Interior-Point Methods by : Stephen J. Wright

Download or read book Primal-dual Interior-Point Methods written by Stephen J. Wright and published by SIAM. This book was released on 1997-01-01 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.

Lectures on Modern Convex Optimization

Download Lectures on Modern Convex Optimization PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898714915
Total Pages : 500 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Modern Convex Optimization by : Aharon Ben-Tal

Download or read book Lectures on Modern Convex Optimization written by Aharon Ben-Tal and published by SIAM. This book was released on 2001-01-01 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.

Convex Optimization

Download Convex Optimization PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521833783
Total Pages : 744 pages
Book Rating : 4.8/5 (337 download)

DOWNLOAD NOW!


Book Synopsis Convex Optimization by : Stephen P. Boyd

Download or read book Convex Optimization written by Stephen P. Boyd and published by Cambridge University Press. This book was released on 2004-03-08 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Interior Point Algorithms

Download Interior Point Algorithms PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118030958
Total Pages : 440 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Interior Point Algorithms by : Yinyu Ye

Download or read book Interior Point Algorithms written by Yinyu Ye and published by John Wiley & Sons. This book was released on 2011-10-11 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive review of the theory and practice of one oftoday's most powerful optimization techniques. The explosive growth of research into and development of interiorpoint algorithms over the past two decades has significantlyimproved the complexity of linear programming and yielded some oftoday's most sophisticated computing techniques. This book offers acomprehensive and thorough treatment of the theory, analysis, andimplementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basicand advanced aspects of the subject. Beginning with an overview offundamental mathematical procedures, Professor Yinyu Ye movesswiftly on to in-depth explorations of numerous computationalproblems and the algorithms that have been developed to solve them.An indispensable text/reference for students and researchers inapplied mathematics, computer science, operations research,management science, and engineering, Interior Point Algorithms: * Derives various complexity results for linear and convexprogramming * Emphasizes interior point geometry and potential theory * Covers state-of-the-art results for extension, implementation,and other cutting-edge computational techniques * Explores the hottest new research topics, including nonlinearprogramming and nonconvex optimization.

Interior Point Methods for Linear Optimization

Download Interior Point Methods for Linear Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387263799
Total Pages : 501 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Interior Point Methods for Linear Optimization by : Cornelis Roos

Download or read book Interior Point Methods for Linear Optimization written by Cornelis Roos and published by Springer Science & Business Media. This book was released on 2006-02-08 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: The era of interior point methods (IPMs) was initiated by N. Karmarkar’s 1984 paper, which triggered turbulent research and reshaped almost all areas of optimization theory and computational practice. This book offers comprehensive coverage of IPMs. It details the main results of more than a decade of IPM research. Numerous exercises are provided to aid in understanding the material.

Geometric Algorithms and Combinatorial Optimization

Download Geometric Algorithms and Combinatorial Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642978819
Total Pages : 374 pages
Book Rating : 4.6/5 (429 download)

DOWNLOAD NOW!


Book Synopsis Geometric Algorithms and Combinatorial Optimization by : Martin Grötschel

Download or read book Geometric Algorithms and Combinatorial Optimization written by Martin Grötschel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.

Convex Optimization Algorithms

Download Convex Optimization Algorithms PDF Online Free

Author :
Publisher : Athena Scientific
ISBN 13 : 1886529280
Total Pages : 576 pages
Book Rating : 4.8/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Convex Optimization Algorithms by : Dimitri Bertsekas

Download or read book Convex Optimization Algorithms written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2015-02-01 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.

Lectures on Convex Optimization

Download Lectures on Convex Optimization PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319915789
Total Pages : 603 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Convex Optimization by : Yurii Nesterov

Download or read book Lectures on Convex Optimization written by Yurii Nesterov and published by Springer. This book was released on 2018-11-19 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author’s lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.

Convex Optimization

Download Convex Optimization PDF Online Free

Author :
Publisher : Foundations and Trends (R) in Machine Learning
ISBN 13 : 9781601988607
Total Pages : 142 pages
Book Rating : 4.9/5 (886 download)

DOWNLOAD NOW!


Book Synopsis Convex Optimization by : Sébastien Bubeck

Download or read book Convex Optimization written by Sébastien Bubeck and published by Foundations and Trends (R) in Machine Learning. This book was released on 2015-11-12 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents the main complexity theorems in convex optimization and their corresponding algorithms. It begins with the fundamental theory of black-box optimization and proceeds to guide the reader through recent advances in structural optimization and stochastic optimization. The presentation of black-box optimization, strongly influenced by the seminal book by Nesterov, includes the analysis of cutting plane methods, as well as (accelerated) gradient descent schemes. Special attention is also given to non-Euclidean settings (relevant algorithms include Frank-Wolfe, mirror descent, and dual averaging), and discussing their relevance in machine learning. The text provides a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), saddle-point mirror prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of interior point methods. In stochastic optimization it discusses stochastic gradient descent, mini-batches, random coordinate descent, and sublinear algorithms. It also briefly touches upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods.

Progress in Mathematical Programming

Download Progress in Mathematical Programming PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461396174
Total Pages : 164 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Progress in Mathematical Programming by : Nimrod Megiddo

Download or read book Progress in Mathematical Programming written by Nimrod Megiddo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: The starting point of this volume was a conference entitled "Progress in Mathematical Programming," held at the Asilomar Conference Center in Pacific Grove, California, March 1-4, 1987. The main topic of the conference was developments in the theory and practice of linear programming since Karmarkar's algorithm. There were thirty presentations and approximately fifty people attended. Presentations included new algorithms, new analyses of algorithms, reports on computational experience, and some other topics related to the practice of mathematical programming. Interestingly, most of the progress reported at the conference was on the theoretical side. Several new polynomial algorithms for linear program ming were presented (Barnes-Chopra-Jensen, Goldfarb-Mehrotra, Gonzaga, Kojima-Mizuno-Yoshise, Renegar, Todd, Vaidya, and Ye). Other algorithms presented were by Betke-Gritzmann, Blum, Gill-Murray-Saunders-Wright, Nazareth, Vial, and Zikan-Cottle. Efforts in the theoretical analysis of algo rithms were also reported (Anstreicher, Bayer-Lagarias, Imai, Lagarias, Megiddo-Shub, Lagarias, Smale, and Vanderbei). Computational experiences were reported by Lustig, Tomlin, Todd, Tone, Ye, and Zikan-Cottle. Of special interest, although not in the main direction discussed at the conference, was the report by Rinaldi on the practical solution of some large traveling salesman problems. At the time of the conference, it was still not clear whether the new algorithms developed since Karmarkar's algorithm would replace the simplex method in practice. Alan Hoffman presented results on conditions under which linear programming problems can be solved by greedy algorithms."

Convex Optimization Theory

Download Convex Optimization Theory PDF Online Free

Author :
Publisher : Athena Scientific
ISBN 13 : 1886529310
Total Pages : 256 pages
Book Rating : 4.8/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Convex Optimization Theory by : Dimitri Bertsekas

Download or read book Convex Optimization Theory written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2009-06-01 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).

High Performance Optimization

Download High Performance Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780792360131
Total Pages : 506 pages
Book Rating : 4.3/5 (61 download)

DOWNLOAD NOW!


Book Synopsis High Performance Optimization by : Hans Frenk

Download or read book High Performance Optimization written by Hans Frenk and published by Springer Science & Business Media. This book was released on 2000 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a long time the techniques of solving linear optimization (LP) problems improved only marginally. Fifteen years ago, however, a revolutionary discovery changed everything. A new `golden age' for optimization started, which is continuing up to the current time. What is the cause of the excitement? Techniques of linear programming formed previously an isolated body of knowledge. Then suddenly a tunnel was built linking it with a rich and promising land, part of which was already cultivated, part of which was completely unexplored. These revolutionary new techniques are now applied to solve conic linear problems. This makes it possible to model and solve large classes of essentially nonlinear optimization problems as efficiently as LP problems. This volume gives an overview of the latest developments of such `High Performance Optimization Techniques'. The first part is a thorough treatment of interior point methods for semidefinite programming problems. The second part reviews today's most exciting research topics and results in the area of convex optimization. Audience: This volume is for graduate students and researchers who are interested in modern optimization techniques.

Numerical Optimization

Download Numerical Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387400656
Total Pages : 686 pages
Book Rating : 4.3/5 (874 download)

DOWNLOAD NOW!


Book Synopsis Numerical Optimization by : Jorge Nocedal

Download or read book Numerical Optimization written by Jorge Nocedal and published by Springer Science & Business Media. This book was released on 2006-12-11 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.