Information Theoretic Neural Computation

Download Information Theoretic Neural Computation PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9810240759
Total Pages : 219 pages
Book Rating : 4.8/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Information Theoretic Neural Computation by : Ryotaro Kamimura

Download or read book Information Theoretic Neural Computation written by Ryotaro Kamimura and published by World Scientific. This book was released on 2002 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to develope new types of information media and technology, it is essential to model complex and flexible information processing in living systems. This book presents a new approach to modeling complex information processing in living systems. Traditional information-theoretic methods in neural networks are unified in one framework, i.e. a-entropy. This new approach will enable information systems such as computers to imitate and simulate human complex behavior and to uncover the deepest secrets of the human mind.

An Information-Theoretic Approach to Neural Computing

Download An Information-Theoretic Approach to Neural Computing PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461240166
Total Pages : 265 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis An Information-Theoretic Approach to Neural Computing by : Gustavo Deco

Download or read book An Information-Theoretic Approach to Neural Computing written by Gustavo Deco and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed formulation of neural networks from the information-theoretic viewpoint. The authors show how this perspective provides new insights into the design theory of neural networks. In particular they demonstrate how these methods may be applied to the topics of supervised and unsupervised learning, including feature extraction, linear and non-linear independent component analysis, and Boltzmann machines. Readers are assumed to have a basic understanding of neural networks, but all the relevant concepts from information theory are carefully introduced and explained. Consequently, readers from varied scientific disciplines, notably cognitive scientists, engineers, physicists, statisticians, and computer scientists, will find this an extremely valuable introduction to this topic.

Introduction To The Theory Of Neural Computation

Download Introduction To The Theory Of Neural Computation PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429968213
Total Pages : 352 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Introduction To The Theory Of Neural Computation by : John A. Hertz

Download or read book Introduction To The Theory Of Neural Computation written by John A. Hertz and published by CRC Press. This book was released on 2018-03-08 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.

Information Theoretic Learning

Download Information Theoretic Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441915702
Total Pages : 538 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Information Theoretic Learning by : Jose C. Principe

Download or read book Information Theoretic Learning written by Jose C. Principe and published by Springer Science & Business Media. This book was released on 2010-04-06 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first cohesive treatment of ITL algorithms to adapt linear or nonlinear learning machines both in supervised and unsupervised paradigms. It compares the performance of ITL algorithms with the second order counterparts in many applications.

Principles of Neural Information Theory

Download Principles of Neural Information Theory PDF Online Free

Author :
Publisher :
ISBN 13 : 9780993367922
Total Pages : 214 pages
Book Rating : 4.3/5 (679 download)

DOWNLOAD NOW!


Book Synopsis Principles of Neural Information Theory by : James V Stone

Download or read book Principles of Neural Information Theory written by James V Stone and published by . This book was released on 2018-05-15 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this richly illustrated book, it is shown how Shannon's mathematical theory of information defines absolute limits on neural efficiency; limits which ultimately determine the neuroanatomical microstructure of the eye and brain. Written in an informal style this is an ideal introduction to cutting-edge research in neural information theory.

Information Theory, Inference and Learning Algorithms

Download Information Theory, Inference and Learning Algorithms PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521642989
Total Pages : 694 pages
Book Rating : 4.6/5 (429 download)

DOWNLOAD NOW!


Book Synopsis Information Theory, Inference and Learning Algorithms by : David J. C. MacKay

Download or read book Information Theory, Inference and Learning Algorithms written by David J. C. MacKay and published by Cambridge University Press. This book was released on 2003-09-25 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

Neural Computation and Self-organizing Maps

Download Neural Computation and Self-organizing Maps PDF Online Free

Author :
Publisher : Addison Wesley Publishing Company
ISBN 13 :
Total Pages : 328 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Neural Computation and Self-organizing Maps by : Helge Ritter

Download or read book Neural Computation and Self-organizing Maps written by Helge Ritter and published by Addison Wesley Publishing Company. This book was released on 1992 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Neural Networks and Analog Computation

Download Neural Networks and Analog Computation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146120707X
Total Pages : 193 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks and Analog Computation by : Hava T. Siegelmann

Download or read book Neural Networks and Analog Computation written by Hava T. Siegelmann and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theoretical foundations of Neural Networks and Analog Computation conceptualize neural networks as a particular type of computer consisting of multiple assemblies of basic processors interconnected in an intricate structure. Examining these networks under various resource constraints reveals a continuum of computational devices, several of which coincide with well-known classical models. On a mathematical level, the treatment of neural computations enriches the theory of computation but also explicated the computational complexity associated with biological networks, adaptive engineering tools, and related models from the fields of control theory and nonlinear dynamics. The material in this book will be of interest to researchers in a variety of engineering and applied sciences disciplines. In addition, the work may provide the base of a graduate-level seminar in neural networks for computer science students.

Novelty, Information and Surprise

Download Novelty, Information and Surprise PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642290752
Total Pages : 260 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Novelty, Information and Surprise by : Günther Palm

Download or read book Novelty, Information and Surprise written by Günther Palm and published by Springer Science & Business Media. This book was released on 2012-08-30 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book offers a new approach to information theory that is more general then the classical approach by Shannon. The classical definition of information is given for an alphabet of symbols or for a set of mutually exclusive propositions (a partition of the probability space Ω) with corresponding probabilities adding up to 1. The new definition is given for an arbitrary cover of Ω, i.e. for a set of possibly overlapping propositions. The generalized information concept is called novelty and it is accompanied by two new concepts derived from it, designated as information and surprise, which describe "opposite" versions of novelty, information being related more to classical information theory and surprise being related more to the classical concept of statistical significance. In the discussion of these three concepts and their interrelations several properties or classes of covers are defined, which turn out to be lattices. The book also presents applications of these new concepts, mostly in statistics and in neuroscience.

An Introduction to Computational Learning Theory

Download An Introduction to Computational Learning Theory PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262111935
Total Pages : 230 pages
Book Rating : 4.1/5 (119 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Computational Learning Theory by : Michael J. Kearns

Download or read book An Introduction to Computational Learning Theory written by Michael J. Kearns and published by MIT Press. This book was released on 1994-08-15 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Computational learning theory is a new and rapidly expanding area of research that examines formal models of induction with the goals of discovering the common methods underlying efficient learning algorithms and identifying the computational impediments to learning. Each topic in the book has been chosen to elucidate a general principle, which is explored in a precise formal setting. Intuition has been emphasized in the presentation to make the material accessible to the nontheoretician while still providing precise arguments for the specialist. This balance is the result of new proofs of established theorems, and new presentations of the standard proofs. The topics covered include the motivation, definitions, and fundamental results, both positive and negative, for the widely studied L. G. Valiant model of Probably Approximately Correct Learning; Occam's Razor, which formalizes a relationship between learning and data compression; the Vapnik-Chervonenkis dimension; the equivalence of weak and strong learning; efficient learning in the presence of noise by the method of statistical queries; relationships between learning and cryptography, and the resulting computational limitations on efficient learning; reducibility between learning problems; and algorithms for learning finite automata from active experimentation.

Biophysics of Computation

Download Biophysics of Computation PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0195181999
Total Pages : 587 pages
Book Rating : 4.1/5 (951 download)

DOWNLOAD NOW!


Book Synopsis Biophysics of Computation by : Christof Koch

Download or read book Biophysics of Computation written by Christof Koch and published by Oxford University Press. This book was released on 2004-10-28 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.

Discrete Neural Computation

Download Discrete Neural Computation PDF Online Free

Author :
Publisher : Prentice Hall
ISBN 13 :
Total Pages : 444 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Discrete Neural Computation by : Kai-Yeung Siu

Download or read book Discrete Neural Computation written by Kai-Yeung Siu and published by Prentice Hall. This book was released on 1995 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the three leading authorities in the field, this book brings together -- in one volume -- the recent developments in discrete neural computation, with a focus on neural networks with discrete inputs and outputs. It integrates a variety of important ideas and analytical techniques, and establishes a theoretical foundation for discrete neural computation. Discusses the basic models for discrete neural computation and the fundamental concepts in computational complexity; establishes efficient designs of threshold circuits for computing various functions; develops techniques for analyzing the computational power of neural models. A reference/text for computer scientists and researchers involved with neural computation and related disciplines.

Neuronal Dynamics

Download Neuronal Dynamics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107060834
Total Pages : 591 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Neuronal Dynamics by : Wulfram Gerstner

Download or read book Neuronal Dynamics written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2014-07-24 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Artificial Intelligence in the Age of Neural Networks and Brain Computing

Download Artificial Intelligence in the Age of Neural Networks and Brain Computing PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0323958168
Total Pages : 398 pages
Book Rating : 4.3/5 (239 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence in the Age of Neural Networks and Brain Computing by : Robert Kozma

Download or read book Artificial Intelligence in the Age of Neural Networks and Brain Computing written by Robert Kozma and published by Academic Press. This book was released on 2023-10-11 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks

Information, Physics, and Computation

Download Information, Physics, and Computation PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 019857083X
Total Pages : 584 pages
Book Rating : 4.1/5 (985 download)

DOWNLOAD NOW!


Book Synopsis Information, Physics, and Computation by : Marc Mézard

Download or read book Information, Physics, and Computation written by Marc Mézard and published by Oxford University Press. This book was released on 2009-01-22 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.

Deep Learning

Download Deep Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262337371
Total Pages : 801 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning by : Ian Goodfellow

Download or read book Deep Learning written by Ian Goodfellow and published by MIT Press. This book was released on 2016-11-10 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Neural Engineering

Download Neural Engineering PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262550604
Total Pages : 384 pages
Book Rating : 4.5/5 (56 download)

DOWNLOAD NOW!


Book Synopsis Neural Engineering by : Chris Eliasmith

Download or read book Neural Engineering written by Chris Eliasmith and published by MIT Press. This book was released on 2003 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: A synthesis of current approaches to adapting engineering tools to the study of neurobiological systems.