Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Inference And Prediction In Large Dimensions
Download Inference And Prediction In Large Dimensions full books in PDF, epub, and Kindle. Read online Inference And Prediction In Large Dimensions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Inference and Prediction in Large Dimensions by : Denis Bosq
Download or read book Inference and Prediction in Large Dimensions written by Denis Bosq and published by John Wiley & Sons. This book was released on 2008-03-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a predominantly theoretical coverage of statistical prediction, with some potential applications discussed, when data and/ or parameters belong to a large or infinite dimensional space. It develops the theory of statistical prediction, non-parametric estimation by adaptive projection – with applications to tests of fit and prediction, and theory of linear processes in function spaces with applications to prediction of continuous time processes. This work is in the Wiley-Dunod Series co-published between Dunod (www.dunod.com) and John Wiley and Sons, Ltd.
Book Synopsis Large-Scale Inference by : Bradley Efron
Download or read book Large-Scale Inference written by Bradley Efron and published by Cambridge University Press. This book was released on 2012-11-29 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.
Book Synopsis High-Dimensional Covariance Estimation by : Mohsen Pourahmadi
Download or read book High-Dimensional Covariance Estimation written by Mohsen Pourahmadi and published by John Wiley & Sons. This book was released on 2013-05-28 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task. High-Dimensional Covariance Estimation features chapters on: Data, Sparsity, and Regularization Regularizing the Eigenstructure Banding, Tapering, and Thresholding Covariance Matrices Sparse Gaussian Graphical Models Multivariate Regression The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.
Book Synopsis Statistical Inference as Severe Testing by : Deborah G. Mayo
Download or read book Statistical Inference as Severe Testing written by Deborah G. Mayo and published by Cambridge University Press. This book was released on 2018-09-20 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Book Synopsis An Introduction to Probability and Statistics by : Vijay K. Rohatgi
Download or read book An Introduction to Probability and Statistics written by Vijay K. Rohatgi and published by John Wiley & Sons. This book was released on 2015-09-08 with total page 722 pages. Available in PDF, EPUB and Kindle. Book excerpt: A well-balanced introduction to probability theory and mathematical statistics Featuring updated material, An Introduction to Probability and Statistics, Third Edition remains a solid overview to probability theory and mathematical statistics. Divided intothree parts, the Third Edition begins by presenting the fundamentals and foundationsof probability. The second part addresses statistical inference, and the remainingchapters focus on special topics. An Introduction to Probability and Statistics, Third Edition includes: A new section on regression analysis to include multiple regression, logistic regression, and Poisson regression A reorganized chapter on large sample theory to emphasize the growing role of asymptotic statistics Additional topical coverage on bootstrapping, estimation procedures, and resampling Discussions on invariance, ancillary statistics, conjugate prior distributions, and invariant confidence intervals Over 550 problems and answers to most problems, as well as 350 worked out examples and 200 remarks Numerous figures to further illustrate examples and proofs throughout An Introduction to Probability and Statistics, Third Edition is an ideal reference and resource for scientists and engineers in the fields of statistics, mathematics, physics, industrial management, and engineering. The book is also an excellent text for upper-undergraduate and graduate-level students majoring in probability and statistics.
Book Synopsis Smooth Tests of Goodness of Fit by : J. C. W. Rayner
Download or read book Smooth Tests of Goodness of Fit written by J. C. W. Rayner and published by John Wiley & Sons. This book was released on 2009-07-23 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this fully revised and expanded edition of Smooth Tests of Goodness of Fit, the latest powerful techniques for assessing statistical and probabilistic models using this proven class of procedures are presented in a practical and easily accessible manner. Emphasis is placed on modern developments such as data-driven tests, diagnostic properties, and model selection techniques. Applicable to most statistical distributions, the methodology described in this book is optimal for deriving tests of fit for new distributions and complex probabilistic models, and is a standard against which new procedures should be compared. New features of the second edition include: Expansion of the methodology to cover virtually any statistical distribution, including exponential families Discussion and application of data-driven smooth tests Techniques for the selection of the best model for the data, with a guide to acceptable alternatives Numerous new, revised, and expanded examples, generated using R code Smooth Tests of Goodness of Fit is an invaluable resource for all methodological researchers as well as graduate students undertaking goodness-of-fit, statistical, and probabilistic model assessment courses. Practitioners wishing to make an informed choice of goodness-of-fit test will also find this book an indispensible guide. Reviews of the first edition: "This book gives a very readable account of the smooth tests of goodness of fit. The book can be read by scientists having only an introductory knowledge of statistics. It contains a fairly extensive list of references; research will find it helpful for the further development of smooth tests." --T.K. Chandra, Zentralblatt für Mathematik und ihre Grenzgebiete, Band 73, 1/92' "An excellent job of showing how smooth tests (a class of goodness of fit tests) are generally and easily applicable in assessing the validity of models involving statistical distributions....Highly recommended for undergraduate and graduate libraries." --Choice "The book can be read by scientists having only an introductory knowledge of statistics. It contains a fairly extensive list of references; researchers will find it helpful for the further development of smooth tests."--Mathematical Reviews "Very rich in examples . . . Should find its way to the desks of many statisticians." --Technometrics
Book Synopsis Statistical Shape Analysis by : Ian L. Dryden
Download or read book Statistical Shape Analysis written by Ian L. Dryden and published by John Wiley & Sons. This book was released on 2016-09-06 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thoroughly revised and updated edition of this introduction to modern statistical methods for shape analysis Shape analysis is an important tool in the many disciplines where objects are compared using geometrical features. Examples include comparing brain shape in schizophrenia; investigating protein molecules in bioinformatics; and describing growth of organisms in biology. This book is a significant update of the highly-regarded Statistical Shape Analysis by the same authors. The new edition lays the foundations of landmark shape analysis, including geometrical concepts and statistical techniques, and extends to include analysis of curves, surfaces, images and other types of object data. Key definitions and concepts are discussed throughout, and the relative merits of different approaches are presented. The authors have included substantial new material on recent statistical developments and offer numerous examples throughout the text. Concepts are introduced in an accessible manner, while retaining sufficient detail for more specialist statisticians to appreciate the challenges and opportunities of this new field. Computer code has been included for instructional use, along with exercises to enable readers to implement the applications themselves in R and to follow the key ideas by hands-on analysis. Offers a detailed yet accessible treatment of statistical methods for shape analysis Includes numerous examples and applications from many disciplines Provides R code for implementing the examples Covers a wide variety of recent developments in shape analysis Shape Analysis, with Applications in R will offer a valuable introduction to this fast-moving research area for statisticians and other applied scientists working in diverse areas, including archaeology, bioinformatics, biology, chemistry, computer science, medicine, morphometics and image analysis.
Book Synopsis Statistics for Imaging, Optics, and Photonics by : Peter Bajorski
Download or read book Statistics for Imaging, Optics, and Photonics written by Peter Bajorski and published by John Wiley & Sons. This book was released on 2011-10-17 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: A vivid, hands-on discussion of the statistical methods in imaging, optics, and photonics applications In the field of imaging science, there is a growing need for students and practitioners to be equipped with the necessary knowledge and tools to carry out quantitative analysis of data. Providing a self-contained approach that is not too heavily statistical in nature, Statistics for Imaging, Optics, and Photonics presents necessary analytical techniques in the context of real examples from various areas within the field, including remote sensing, color science, printing, and astronomy. Bridging the gap between imaging, optics, photonics, and statistical data analysis, the author uniquely concentrates on statistical inference, providing a wide range of relevant methods. Brief introductions to key probabilistic terms are provided at the beginning of the book in order to present the notation used, followed by discussions on multivariate techniques such as: Linear regression models, vector and matrix algebra, and random vectors and matrices Multivariate statistical inference, including inferences about both mean vectors and covariance matrices Principal components analysis Canonical correlation analysis Discrimination and classification analysis for two or more populations and spatial smoothing Cluster analysis, including similarity and dissimilarity measures and hierarchical and nonhierarchical clustering methods Intuitive and geometric understanding of concepts is emphasized, and all examples are relatively simple and include background explanations. Computational results and graphs are presented using the freely available R software, and can be replicated by using a variety of software packages. Throughout the book, problem sets and solutions contain partial numerical results, allowing readers to confirm the accuracy of their approach; and a related website features additional resources including the book's datasets and figures. Statistics for Imaging, Optics, and Photonics is an excellent book for courses on multivariate statistics for imaging science, optics, and photonics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for professionals working in imaging, optics, and photonics who carry out data analyses in their everyday work.
Book Synopsis Nonparametric Analysis of Univariate Heavy-Tailed Data by : Natalia Markovich
Download or read book Nonparametric Analysis of Univariate Heavy-Tailed Data written by Natalia Markovich and published by John Wiley & Sons. This book was released on 2008-03-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heavy-tailed distributions are typical for phenomena in complex multi-component systems such as biometry, economics, ecological systems, sociology, web access statistics, internet traffic, biblio-metrics, finance and business. The analysis of such distributions requires special methods of estimation due to their specific features. These are not only the slow decay to zero of the tail, but also the violation of Cramer’s condition, possible non-existence of some moments, and sparse observations in the tail of the distribution. The book focuses on the methods of statistical analysis of heavy-tailed independent identically distributed random variables by empirical samples of moderate sizes. It provides a detailed survey of classical results and recent developments in the theory of nonparametric estimation of the probability density function, the tail index, the hazard rate and the renewal function. Both asymptotical results, for example convergence rates of the estimates, and results for the samples of moderate sizes supported by Monte-Carlo investigation, are considered. The text is illustrated by the application of the considered methodologies to real data of web traffic measurements.
Book Synopsis Introduction to Imprecise Probabilities by : Thomas Augustin
Download or read book Introduction to Imprecise Probabilities written by Thomas Augustin and published by John Wiley & Sons. This book was released on 2014-06-03 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the theory has become widely accepted and has been further developed, but a detailed introduction is needed in order to make the material available and accessible to a wide audience. This will be the first book providing such an introduction, covering core theory and recent developments which can be applied to many application areas. All authors of individual chapters are leading researchers on the specific topics, assuring high quality and up-to-date contents. An Introduction to Imprecise Probabilities provides a comprehensive introduction to imprecise probabilities, including theory and applications reflecting the current state if the art. Each chapter is written by experts on the respective topics, including: Sets of desirable gambles; Coherent lower (conditional) previsions; Special cases and links to literature; Decision making; Graphical models; Classification; Reliability and risk assessment; Statistical inference; Structural judgments; Aspects of implementation (including elicitation and computation); Models in finance; Game-theoretic probability; Stochastic processes (including Markov chains); Engineering applications. Essential reading for researchers in academia, research institutes and other organizations, as well as practitioners engaged in areas such as risk analysis and engineering.
Book Synopsis Sample Size Determination and Power by : Thomas P. Ryan
Download or read book Sample Size Determination and Power written by Thomas P. Ryan and published by John Wiley & Sons. This book was released on 2013-05-28 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive approach to sample size determination and power with applications for a variety of fields Sample Size Determination and Power features a modern introduction to the applicability of sample size determination and provides a variety of discussions on broad topics including epidemiology, microarrays, survival analysis and reliability, design of experiments, regression, and confidence intervals. The book distinctively merges applications from numerous fields such as statistics, biostatistics, the health sciences, and engineering in order to provide a complete introduction to the general statistical use of sample size determination. Advanced topics including multivariate analysis, clinical trials, and quality improvement are addressed, and in addition, the book provides considerable guidance on available software for sample size determination. Written by a well-known author who has extensively class-tested the material, Sample Size Determination and Power: Highlights the applicability of sample size determination and provides extensive literature coverage Presents a modern, general approach to relevant software to guide sample size determination including CATD (computer-aided trial design) Addresses the use of sample size determination in grant proposals and provides up-to-date references for grant investigators An appealing reference book for scientific researchers in a variety of fields, such as statistics, biostatistics, the health sciences, mathematics, ecology, and geology, who use sampling and estimation methods in their work, Sample Size Determination and Power is also an ideal supplementary text for upper-level undergraduate and graduate-level courses in statistical sampling.
Book Synopsis Examples and Problems in Mathematical Statistics by : Shelemyahu Zacks
Download or read book Examples and Problems in Mathematical Statistics written by Shelemyahu Zacks and published by John Wiley & Sons. This book was released on 2013-12-17 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides the necessary skills to solve problems in mathematical statistics through theory, concrete examples, and exercises With a clear and detailed approach to the fundamentals of statistical theory, Examples and Problems in Mathematical Statistics uniquely bridges the gap between theory andapplication and presents numerous problem-solving examples that illustrate the relatednotations and proven results. Written by an established authority in probability and mathematical statistics, each chapter begins with a theoretical presentation to introduce both the topic and the important results in an effort to aid in overall comprehension. Examples are then provided, followed by problems, and finally, solutions to some of the earlier problems. In addition, Examples and Problems in Mathematical Statistics features: Over 160 practical and interesting real-world examples from a variety of fields including engineering, mathematics, and statistics to help readers become proficient in theoretical problem solving More than 430 unique exercises with select solutions Key statistical inference topics, such as probability theory, statistical distributions, sufficient statistics, information in samples, testing statistical hypotheses, statistical estimation, confidence and tolerance intervals, large sample theory, and Bayesian analysis Recommended for graduate-level courses in probability and statistical inference, Examples and Problems in Mathematical Statistics is also an ideal reference for applied statisticians and researchers.
Book Synopsis Foundations of Linear and Generalized Linear Models by : Alan Agresti
Download or read book Foundations of Linear and Generalized Linear Models written by Alan Agresti and published by John Wiley & Sons. This book was released on 2015-01-15 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.
Book Synopsis Approximate Dynamic Programming by : Warren B. Powell
Download or read book Approximate Dynamic Programming written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2011-10-26 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition "Finally, a book devoted to dynamic programming and written using the language of operations research (OR)! This beautiful book fills a gap in the libraries of OR specialists and practitioners." —Computing Reviews This new edition showcases a focus on modeling and computation for complex classes of approximate dynamic programming problems Understanding approximate dynamic programming (ADP) is vital in order to develop practical and high-quality solutions to complex industrial problems, particularly when those problems involve making decisions in the presence of uncertainty. Approximate Dynamic Programming, Second Edition uniquely integrates four distinct disciplines—Markov decision processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully approach, model, and solve a wide range of real-life problems using ADP. The book continues to bridge the gap between computer science, simulation, and operations research and now adopts the notation and vocabulary of reinforcement learning as well as stochastic search and simulation optimization. The author outlines the essential algorithms that serve as a starting point in the design of practical solutions for real problems. The three curses of dimensionality that impact complex problems are introduced and detailed coverage of implementation challenges is provided. The Second Edition also features: A new chapter describing four fundamental classes of policies for working with diverse stochastic optimization problems: myopic policies, look-ahead policies, policy function approximations, and policies based on value function approximations A new chapter on policy search that brings together stochastic search and simulation optimization concepts and introduces a new class of optimal learning strategies Updated coverage of the exploration exploitation problem in ADP, now including a recently developed method for doing active learning in the presence of a physical state, using the concept of the knowledge gradient A new sequence of chapters describing statistical methods for approximating value functions, estimating the value of a fixed policy, and value function approximation while searching for optimal policies The presented coverage of ADP emphasizes models and algorithms, focusing on related applications and computation while also discussing the theoretical side of the topic that explores proofs of convergence and rate of convergence. A related website features an ongoing discussion of the evolving fields of approximation dynamic programming and reinforcement learning, along with additional readings, software, and datasets. Requiring only a basic understanding of statistics and probability, Approximate Dynamic Programming, Second Edition is an excellent book for industrial engineering and operations research courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals who utilize dynamic programming, stochastic programming, and control theory to solve problems in their everyday work.
Book Synopsis Fundamentals of High-Dimensional Statistics by : Johannes Lederer
Download or read book Fundamentals of High-Dimensional Statistics written by Johannes Lederer and published by Springer Nature. This book was released on 2021-11-16 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a step-by-step introduction to the tools and principles of high-dimensional statistics. Each chapter is complemented by numerous exercises, many of them with detailed solutions, and computer labs in R that convey valuable practical insights. The book covers the theory and practice of high-dimensional linear regression, graphical models, and inference, ensuring readers have a smooth start in the field. It also offers suggestions for further reading. Given its scope, the textbook is intended for beginning graduate and advanced undergraduate students in statistics, biostatistics, and bioinformatics, though it will be equally useful to a broader audience.
Book Synopsis Robust Correlation by : Georgy L. Shevlyakov
Download or read book Robust Correlation written by Georgy L. Shevlyakov and published by John Wiley & Sons. This book was released on 2016-09-19 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: This bookpresents material on both the analysis of the classical concepts of correlation and on the development of their robust versions, as well as discussing the related concepts of correlation matrices, partial correlation, canonical correlation, rank correlations, with the corresponding robust and non-robust estimation procedures. Every chapter contains a set of examples with simulated and real-life data. Key features: Makes modern and robust correlation methods readily available and understandable to practitioners, specialists, and consultants working in various fields. Focuses on implementation of methodology and application of robust correlation with R. Introduces the main approaches in robust statistics, such as Huber’s minimax approach and Hampel’s approach based on influence functions. Explores various robust estimates of the correlation coefficient including the minimax variance and bias estimates as well as the most B- and V-robust estimates. Contains applications of robust correlation methods to exploratory data analysis, multivariate statistics, statistics of time series, and to real-life data. Includes an accompanying website featuring computer code and datasets Features exercises and examples throughout the text using both small and large data sets. Theoretical and applied statisticians, specialists in multivariate statistics, robust statistics, robust time series analysis, data analysis and signal processing will benefit from this book. Practitioners who use correlation based methods in their work as well as postgraduate students in statistics will also find this book useful.
Download or read book Geostatistics written by Jean-Paul Chilès and published by John Wiley & Sons. This book was released on 2012-02-08 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition ". . . a readable, comprehensive volume that . . . belongs on the desk, close at hand, of any serious researcher or practitioner." Mathematical Geosciences The state of the art in geostatistics Geostatistical models and techniques such as kriging and stochastic multi-realizations exploit spatial correlations to evaluate natural resources, help optimize their development, and address environmental issues related to air and water quality, soil pollution, and forestry. Geostatistics: Modeling Spatial Uncertainty, Second Edition presents a comprehensive, up-to-date reference on the topic, now featuring the latest developments in the field. The authors explain both the theory and applications of geostatistics through a unified treatment that emphasizes methodology. Key topics that are the foundation of geostatistics are explored in-depth, including stationary and nonstationary models; linear and nonlinear methods; change of support; multivariate approaches; and conditional simulations. The Second Edition highlights the growing number of applications of geostatistical methods and discusses three key areas of growth in the field: New results and methods, including kriging very large datasets; kriging with outliers; nonse??parable space-time covariances; multipoint simulations; pluri-gaussian simulations; gradual deformation; and extreme value geostatistics Newly formed connections between geostatistics and other approaches such as radial basis functions, Gaussian Markov random fields, and data assimilation New perspectives on topics such as collocated cokriging, kriging with an external drift, discrete Gaussian change-of-support models, and simulation algorithms Geostatistics, Second Edition is an excellent book for courses on the topic at the graduate level. It also serves as an invaluable reference for earth scientists, mining and petroleum engineers, geophysicists, and environmental statisticians who collect and analyze data in their everyday work.