Author : Andrew J. Nicas
Publisher : American Mathematical Soc.
ISBN 13 : 0821822675
Total Pages : 117 pages
Book Rating : 4.8/5 (218 download)
Book Synopsis Induction Theorems for Groups of Homotopy Manifold Structures by : Andrew J. Nicas
Download or read book Induction Theorems for Groups of Homotopy Manifold Structures written by Andrew J. Nicas and published by American Mathematical Soc.. This book was released on 1982 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classifying spaces in surgery theory were first used by Sullivan and Casson in their (independent) unpublished work on the Hauptvermutung for PL manifolds. In his 1968 Ph.D. thesis, F. Quinn developed a general theory of surgery classifying spaces, realizing the Wall surgery groups as the homotopy groups [italic]L[subscript]*([italic]G) = [lowercase Greek]Pi[subscript]*([italic]L([italic]G)) of a spectrum of manifold n-ad surgery problems with fundamental group G. This work presents a detailed account of Quinn's theory. Geometric methods are used to view the Sullivan-Wall manifold structure sequence as an exact sequence of abelian groups (as suggested by Quinn). The intersection of the known induction theorems for generalized cohomology groups and [italic]L-groups then gives an induction theorem for the structure sequence with finite [italic]G.