Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Hybrid Kalman Filter
Download Hybrid Kalman Filter full books in PDF, epub, and Kindle. Read online Hybrid Kalman Filter ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Download or read book Data Assimilation written by Geir Evensen and published by Springer Science & Business Media. This book was released on 2006-12-22 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews popular data-assimilation methods, such as weak and strong constraint variational methods, ensemble filters and smoothers. The author shows how different methods can be derived from a common theoretical basis, as well as how they differ or are related to each other, and which properties characterize them, using several examples. Readers will appreciate the included introductory material and detailed derivations in the text, and a supplemental web site.
Book Synopsis Cyber-Physical Power Systems State Estimation by : Arturo Bretas
Download or read book Cyber-Physical Power Systems State Estimation written by Arturo Bretas and published by Elsevier. This book was released on 2021-05-14 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cyber-Physical Power System State Estimation updates classic state estimation tools to enable real-time operations and optimize reliability in modern electric power systems. The work introduces and contextualizes the core concepts and classic approaches to state estimation modeling. It builds on these classic approaches with a suite of data-driven models and non-synchronized measurement tools to reflect current measurement trends required by increasingly more sophisticated grids. Chapters outline core definitions, concepts and the network analysis procedures involved in the real-time operation of EPS. Specific sections introduce power flow problem in EPS, highlighting network component modeling and power flow equations for state estimation before addressing quasi static state estimation in electrical power systems using Weighted Least Squares (WLS) classical and alternatives formulations. Particularities of the state estimation process in distribution systems are also considered. Finally, the work goes on to address observability analysis, measurement redundancy and the processing of gross errors through the analysis of WLS static state estimator residuals. - Develops advanced approaches to smart grid real-time monitoring through quasi-static model state estimation and non-synchronized measurements system models - Presents a novel, extended optimization, physics-based model which identifies and corrects for measurement error presently egregiously discounted in classic models - Demonstrates how to embed cyber-physical security into smart grids for real-time monitoring - Introduces new approaches to calculate power flow in distribution systems and for estimating distribution system states - Incorporates machine-learning based approaches to complement the state estimation process, including pattern recognition-based solutions, principal component analysis and support vector machines
Book Synopsis Optimal State Estimation by : Dan Simon
Download or read book Optimal State Estimation written by Dan Simon and published by John Wiley & Sons. This book was released on 2006-06-19 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.
Book Synopsis Introduction and Implementations of the Kalman Filter by : Felix Govaers
Download or read book Introduction and Implementations of the Kalman Filter written by Felix Govaers and published by BoD – Books on Demand. This book was released on 2019-05-22 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sensor data fusion is the process of combining error-prone, heterogeneous, incomplete, and ambiguous data to gather a higher level of situational awareness. In principle, all living creatures are fusing information from their complementary senses to coordinate their actions and to detect and localize danger. In sensor data fusion, this process is transferred to electronic systems, which rely on some "awareness" of what is happening in certain areas of interest. By means of probability theory and statistics, it is possible to model the relationship between the state space and the sensor data. The number of ingredients of the resulting Kalman filter is limited, but its applications are not.
Book Synopsis Kalman Filtering by : Harold Wayne Sorenson
Download or read book Kalman Filtering written by Harold Wayne Sorenson and published by . This book was released on 1985 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Introduction to Random Signals, Estimation Theory, and Kalman Filtering by : M. Sami Fadali
Download or read book Introduction to Random Signals, Estimation Theory, and Kalman Filtering written by M. Sami Fadali and published by Springer Nature. This book was released on with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Solving ODEs with MATLAB by : Lawrence F. Shampine
Download or read book Solving ODEs with MATLAB written by Lawrence F. Shampine and published by Cambridge University Press. This book was released on 2003-04-28 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.
Book Synopsis Kalman Filters by : Ginalber Luiz Serra
Download or read book Kalman Filters written by Ginalber Luiz Serra and published by BoD – Books on Demand. This book was released on 2018-02-21 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent issues on theory and practice of Kalman filters, with a comprehensive treatment of a selected number of concepts, techniques, and advanced applications. From an interdisciplinary point of view, the contents from each chapter bring together an international scientific community to discuss the state of the art on Kalman filter-based methodologies for adaptive/distributed filtering, optimal estimation, dynamic prediction, nonstationarity, robot navigation, global navigation satellite systems, moving object tracking, optical communication systems, and active power filters, among others. The theoretical and methodological foundations combined with extensive experimental explanation make this book a reference suitable for students, practicing engineers, and researchers in sciences and engineering.
Book Synopsis Kalman Filtering With Inequality Constraints for Turbofan Engine Health Estimation by :
Download or read book Kalman Filtering With Inequality Constraints for Turbofan Engine Health Estimation written by and published by . This book was released on 2003 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops two analytic methods of incorporating state variable inequality constraints in the Kalman filter. The first method is a general technique of using hard constraints to enforce inequalities on the state variable estimates. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The second method uses soft constraints to estimate state variables that are known to vary slowly with time. (Soft constraints are constraints that are required to be approximately satis- fied rather than exactly satisfied.) The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estima- tion accuracy. The improvement is proven theoretically and shown via simulation results. The use of the algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate health parameters. The turbofan engine model con- tains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.
Book Synopsis Directions in Mathematical Systems Theory and Optimization by : Anders Rantzer
Download or read book Directions in Mathematical Systems Theory and Optimization written by Anders Rantzer and published by Springer Science & Business Media. This book was released on 2002-11-05 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: For more than three decades, Anders Lindquist has delivered fundamental cont- butions to the ?elds of systems, signals and control. Throughout this period, four themes can perhaps characterize his interests: Modeling, estimation and ?ltering, feedback and robust control. His contributions to modeling include seminal work on the role of splitting subspaces in stochastic realization theory, on the partial realization problem for both deterministic and stochastic systems, on the solution of the rational covariance extension problem and on system identi?cation. His contributions to ?ltering and estimation include the development of fast ?ltering algorithms, leading to a nonlinear dynamical system which computes spectral factors in its steady state, and which provide an alternate, linear in the dimension of the state space, to computing the Kalman gain from a matrix Riccati equation. His further research on the phase portrait of this dynamical system gave a better understanding of when the Kalman ?lter will converge, answering an open question raised by Kalman. While still a student he established the separation principle for stochastic function differential equations, including some fundamental work on optimal control for stochastic systems with time lags. He continued his interest in feedback control by deriving optimal and robust control feedback laws for suppressing the effects of harmonic disturbances. Moreover, his recent work on a complete parameterization of all rational solutions to the Nevanlinna-Pick problem is providing a new approach to robust control design.
Book Synopsis Beyond the Kalman Filter: Particle Filters for Tracking Applications by : Branko Ristic
Download or read book Beyond the Kalman Filter: Particle Filters for Tracking Applications written by Branko Ristic and published by Artech House. This book was released on 2003-12-01 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: For most tracking applications the Kalman filter is reliable and efficient, but it is limited to a relatively restricted class of linear Gaussian problems. To solve problems beyond this restricted class, particle filters are proving to be dependable methods for stochastic dynamic estimation. Packed with 867 equations, this cutting-edge book introduces the latest advances in particle filter theory, discusses their relevance to defense surveillance systems, and examines defense-related applications of particle filters to nonlinear and non-Gaussian problems. With this hands-on guide, you can develop more accurate and reliable nonlinear filter designs and more precisely predict the performance of these designs. You can also apply particle filters to tracking a ballistic object, detection and tracking of stealthy targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging (bearings-only tracking) of maneuvering targets, range-only tracking, terrain-aided tracking of ground vehicles, and group and extended object tracking.
Book Synopsis Kalman Filtering by : Mohinder S. Grewal
Download or read book Kalman Filtering written by Mohinder S. Grewal and published by John Wiley & Sons. This book was released on 2015-02-02 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: The definitive textbook and professional reference on Kalman Filtering – fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering. Authors Grewal and Andrews draw upon their decades of experience to offer an in-depth examination of the subtleties, common pitfalls, and limitations of estimation theory as it applies to real-world situations. They present many illustrative examples including adaptations for nonlinear filtering, global navigation satellite systems, the error modeling of gyros and accelerometers, inertial navigation systems, and freeway traffic control. Kalman Filtering: Theory and Practice Using MATLAB, Fourth Edition is an ideal textbook in advanced undergraduate and beginning graduate courses in stochastic processes and Kalman filtering. It is also appropriate for self-instruction or review by practicing engineers and scientists who want to learn more about this important topic.
Book Synopsis Bayesian Filtering and Smoothing by : Simo Särkkä
Download or read book Bayesian Filtering and Smoothing written by Simo Särkkä and published by Cambridge University Press. This book was released on 2013-09-05 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Book Synopsis Wireless Algorithms, Systems, and Applications by : Kui Ren
Download or read book Wireless Algorithms, Systems, and Applications written by Kui Ren and published by Springer. This book was released on 2013-07-04 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 8th International Conference on Wireless Algorithms, Systems, and Applications, WASA 2013, held in Zhangjiajie, China, in August 2013. The 25 revised full papers presented together with 18 invited papers were carefully reviewed and selected from 80 submissions. The papers cover the following topics: effective and efficient state-of-the-art algorithm design and analysis, reliable and secure system development and implementations, experimental study and testbed validation, and new application exploration in wireless networks.
Download or read book ICCCE 2020 written by Amit Kumar and published by Springer. This book was released on 2021-10-26 with total page 1611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of research papers and articles presented at the 3rd International Conference on Communications and Cyber-Physical Engineering (ICCCE 2020), held on 1-2 February 2020 at CMR Engineering College, Hyderabad, Telangana, India. Discussing the latest developments in voice and data communication engineering, cyber-physical systems, network science, communication software, image and multimedia processing research and applications, as well as communication technologies and other related technologies, it includes contributions from both academia and industry. This book is a valuable resource for scientists, research scholars and PG students working to formulate their research ideas and find the future directions in these areas. Further, it may serve as a reference work to understand the latest engineering and technologies used by practicing engineers in the field of communication engineering.
Book Synopsis Probabilistic Robotics by : Sebastian Thrun
Download or read book Probabilistic Robotics written by Sebastian Thrun and published by MIT Press. This book was released on 2005-08-19 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the techniques and algorithms of the newest field in robotics. Probabilistic robotics is a new and growing area in robotics, concerned with perception and control in the face of uncertainty. Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.
Book Synopsis Multi-Sensor Information Fusion by : Xue-Bo Jin
Download or read book Multi-Sensor Information Fusion written by Xue-Bo Jin and published by MDPI. This book was released on 2020-03-23 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes papers from the section “Multisensor Information Fusion”, from Sensors between 2018 to 2019. It focuses on the latest research results of current multi-sensor fusion technologies and represents the latest research trends, including traditional information fusion technologies, estimation and filtering, and the latest research, artificial intelligence involving deep learning.