Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Hopf Algebras And Generalizations
Download Hopf Algebras And Generalizations full books in PDF, epub, and Kindle. Read online Hopf Algebras And Generalizations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Hopf Algebras and Generalizations by : Louis H. Kauffman
Download or read book Hopf Algebras and Generalizations written by Louis H. Kauffman and published by American Mathematical Soc.. This book was released on 2007 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hopf algebras have proved to be very interesting structures with deep connections to various areas of mathematics, particularly through quantum groups. Indeed, the study of Hopf algebras, their representations, their generalizations, and the categories related to all these objects has an interdisciplinary nature. It finds methods, relationships, motivations and applications throughout algebra, category theory, topology, geometry, quantum field theory, quantum gravity, and also combinatorics, logic, and theoretical computer science. This volume portrays the vitality of contemporary research in Hopf algebras. Altogether, the articles in the volume explore essential aspects of Hopf algebras and some of their best-known generalizations by means of a variety of approaches and perspectives. They make use of quite different techniques that are already consolidated in the area of quantum algebra. This volume demonstrates the diversity and richness of its subject. Most of its papers introduce the reader to their respective contexts and structures through very expository preliminary sections.
Book Synopsis Hopf Algebras and Root Systems by : István Heckenberger
Download or read book Hopf Algebras and Root Systems written by István Heckenberger and published by American Mathematical Soc.. This book was released on 2020-06-19 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to Hopf algebras in braided monoidal categories with applications to Hopf algebras in the usual sense. The main goal of the book is to present from scratch and with complete proofs the theory of Nichols algebras (or quantum symmetric algebras) and the surprising relationship between Nichols algebras and generalized root systems. In general, Nichols algebras are not classified by Cartan graphs and their root systems. However, extending partial results in the literature, the authors were able to associate a Cartan graph to a large class of Nichols algebras. This allows them to determine the structure of right coideal subalgebras of Nichols systems which generalize Nichols algebras. As applications of these results, the book contains a classification of right coideal subalgebras of quantum groups and of the small quantum groups, and a proof of the existence of PBW-bases that does not involve case by case considerations. The authors also include short chapter summaries at the beginning of each chapter and historical notes at the end of each chapter. The theory of Cartan graphs, Weyl groupoids, and generalized root systems appears here for the first time in a book form. Hence, the book serves as an introduction to the modern classification theory of pointed Hopf algebras for advanced graduate students and researchers working in categorial aspects and classification theory of Hopf algebras and their generalization.
Book Synopsis Hopf Algebras and Their Generalizations from a Category Theoretical Point of View by : Gabriella Böhm
Download or read book Hopf Algebras and Their Generalizations from a Category Theoretical Point of View written by Gabriella Böhm and published by Springer. This book was released on 2018-11-01 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes provide a self-contained introduction to a wide range of generalizations of Hopf algebras. Multiplication of their modules is described by replacing the category of vector spaces with more general monoidal categories, thereby extending the range of applications. Since Sweedler's work in the 1960s, Hopf algebras have earned a noble place in the garden of mathematical structures. Their use is well accepted in fundamental areas such as algebraic geometry, representation theory, algebraic topology, and combinatorics. Now, similar to having moved from groups to groupoids, it is becoming clear that generalizations of Hopf algebras must also be considered. This book offers a unified description of Hopf algebras and their generalizations from a category theoretical point of view. The author applies the theory of liftings to Eilenberg–Moore categories to translate the axioms of each considered variant of a bialgebra (or Hopf algebra) to a bimonad (or Hopf monad) structure on a suitable functor. Covered structures include bialgebroids over arbitrary algebras, in particular weak bialgebras, and bimonoids in duoidal categories, such as bialgebras over commutative rings, semi-Hopf group algebras, small categories, and categories enriched in coalgebras. Graduate students and researchers in algebra and category theory will find this book particularly useful. Including a wide range of illustrative examples, numerous exercises, and completely worked solutions, it is suitable for self-study.
Book Synopsis Quasi-Hopf Algebras by : Daniel Bulacu
Download or read book Quasi-Hopf Algebras written by Daniel Bulacu and published by Cambridge University Press. This book was released on 2019-02-21 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained book dedicated to Drinfeld's quasi-Hopf algebras takes the reader from the basics to the state of the art.
Book Synopsis Hopf Algebras and Their Actions on Rings by : Susan Montgomery
Download or read book Hopf Algebras and Their Actions on Rings written by Susan Montgomery and published by American Mathematical Soc.. This book was released on 1993-10-28 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last ten years have seen a number of significant advances in Hopf algebras. The best known is the introduction of quantum groups, which are Hopf algebras that arose in mathematical physics and now have connections to many areas of mathematics. In addition, several conjectures of Kaplansky have been solved, the most striking of which is a kind of Lagrange's theorem for Hopf algebras. Work on actions of Hopf algebras has unified earlier results on group actions, actions of Lie algebras, and graded algebras. This book brings together many of these recent developments from the viewpoint of the algebraic structure of Hopf algebras and their actions and coactions. Quantum groups are treated as an important example, rather than as an end in themselves. The two introductory chapters review definitions and basic facts; otherwise, most of the material has not previously appeared in book form. Providing an accessible introduction to Hopf algebras, this book would make an excellent graduate textbook for a course in Hopf algebras or an introduction to quantum groups.
Book Synopsis Classical Hopf Algebras and Their Applications by : Pierre Cartier
Download or read book Classical Hopf Algebras and Their Applications written by Pierre Cartier and published by Springer Nature. This book was released on 2021-09-20 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to the structure and combinatorics of classical Hopf algebras. Its main focus is on commutative and cocommutative Hopf algebras, such as algebras of representative functions on groups and enveloping algebras of Lie algebras, as explored in the works of Borel, Cartier, Hopf and others in the 1940s and 50s. The modern and systematic treatment uses the approach of natural operations, illuminating the structure of Hopf algebras by means of their endomorphisms and their combinatorics. Emphasizing notions such as pseudo-coproducts, characteristic endomorphisms, descent algebras and Lie idempotents, the text also covers the important case of enveloping algebras of pre-Lie algebras. A wide range of applications are surveyed, highlighting the main ideas and fundamental results. Suitable as a textbook for masters or doctoral level programs, this book will be of interest to algebraists and anyone working in one of the fields of application of Hopf algebras.
Book Synopsis An Introduction to Hopf Algebras by : Robert G. Underwood
Download or read book An Introduction to Hopf Algebras written by Robert G. Underwood and published by Springer Science & Business Media. This book was released on 2011-08-30 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Only book on Hopf algebras aimed at advanced undergraduates
Download or read book Hopf Algebras written by David E. Radford and published by World Scientific. This book was released on 2012 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a detailed account of basic coalgebra and Hopf algebra theory with emphasis on Hopf algebras which are pointed, semisimple, quasitriangular, or are of certain other quantum groups. It is intended to be a graduate text as well as a research monograph.
Book Synopsis Lectures on Algebraic Quantum Groups by : Ken Brown
Download or read book Lectures on Algebraic Quantum Groups written by Ken Brown and published by Birkhäuser. This book was released on 2012-12-06 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.
Book Synopsis Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods by : William Joseph Haboush
Download or read book Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods written by William Joseph Haboush and published by American Mathematical Soc.. This book was released on 1994 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of a research institute held at Pennsylvania State University, July 1991, focusing on quantum and infinite-dimensional methods of algebraic groups. Topics include perverse sheaves, finite Chevalley groups, the general theory of algebraic groups, representations, invariant theory, general
Book Synopsis Group Theory and Hopf Algebras by : A. P. Balachandran
Download or read book Group Theory and Hopf Algebras written by A. P. Balachandran and published by World Scientific. This book was released on 2010 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is addressed to graduate students and research workers in theoretical physics who want a thorough introduction to group theory and Hopf algebras. It is suitable for a one-semester course in group theory or a two-semester course which also treats advanced topics. Starting from basic definitions, it goes on to treat both finite and Lie groups as well as Hopf algebras. Because of the diversity in the choice of topics, which does not place undue emphasis on finite or Lie groups, it should be useful to physicists working in many branches. A unique aspect of the book is its treatment of Hopf algebras in a form accessible to physicists. Hopf algebras are generalizations of groups and their concepts are acquiring importance in the treatment of conformal field theories, noncommutative spacetimes, topological quantum computation and other important domains of investigation. But there is a scarcity of treatments of Hopf algebras at a level and in a manner that physicists are comfortable with. This book addresses this need superbly. There are illustrative examples from physics scattered throughout the book and in its set of problems. It also has a good bibliography. These features should enhance its value to readers. The authors are senior physicists with considerable research and teaching experience in diverse aspects of fundamental physics. The book, being the outcome of their combined efforts, stands testament to their knowledge and pedagogical skills.
Book Synopsis Generalized Lie Theory in Mathematics, Physics and Beyond by : Sergei D. Silvestrov
Download or read book Generalized Lie Theory in Mathematics, Physics and Beyond written by Sergei D. Silvestrov and published by Springer Science & Business Media. This book was released on 2008-11-18 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the cutting edge of the fundamental role of generalizations of Lie theory and related non-commutative and non-associative structures in mathematics and physics.
Book Synopsis Tensor Categories by : Pavel Etingof
Download or read book Tensor Categories written by Pavel Etingof and published by American Mathematical Soc.. This book was released on 2016-08-05 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
Book Synopsis Foundations of Quantum Group Theory by : Shahn Majid
Download or read book Foundations of Quantum Group Theory written by Shahn Majid and published by Cambridge University Press. This book was released on 2000 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate level text which systematically lays out the foundations of Quantum Groups.
Book Synopsis Complex Cobordism and Stable Homotopy Groups of Spheres by : Douglas C. Ravenel
Download or read book Complex Cobordism and Stable Homotopy Groups of Spheres written by Douglas C. Ravenel and published by American Mathematical Soc.. This book was released on 2003-11-25 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.
Book Synopsis Fundamentals of Hopf Algebras by : Robert G. Underwood
Download or read book Fundamentals of Hopf Algebras written by Robert G. Underwood and published by Springer. This book was released on 2015-06-10 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras and Hopf algebras. The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author’s 2011 publication, An Introduction to Hopf Algebras. The book may be used as the main text or as a supplementary text for a graduate algebra course. Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields and linearly recursive sequences. The book consists of four chapters. Chapter 1 introduces algebras and coalgebras over a field K; Chapter 2 treats bialgebras; Chapter 3 discusses Hopf algebras and Chapter 4 consists of three applications of Hopf algebras. Each chapter begins with a short overview and ends with a collection of exercises which are designed to review and reinforce the material. Exercises range from straightforward applications of the theory to problems that are devised to challenge the reader. Questions for further study are provided after selected exercises. Most proofs are given in detail, though a few proofs are omitted since they are beyond the scope of this book.
Book Synopsis Yang-Baxter Equation in Integrable Systems by : Michio Jimbo
Download or read book Yang-Baxter Equation in Integrable Systems written by Michio Jimbo and published by World Scientific. This book was released on 1990 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume will be the first reference book devoted specially to the Yang-Baxter equation. The subject relates to broad areas including solvable models in statistical mechanics, factorized S matrices, quantum inverse scattering method, quantum groups, knot theory and conformal field theory. The articles assembled here cover major works from the pioneering papers to classical Yang-Baxter equation, its quantization, variety of solutions, constructions and recent generalizations to higher genus solutions.