Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Hilbert Space Methods In Science And Engineering
Download Hilbert Space Methods In Science And Engineering full books in PDF, epub, and Kindle. Read online Hilbert Space Methods In Science And Engineering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Hilbert Space Methods in Science and Engineering, by : László Máté
Download or read book Hilbert Space Methods in Science and Engineering, written by László Máté and published by CRC Press. This book was released on 1990 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume aims to present Hilbert space theory as an accessible language for applied mathematicians, engineers and scientists. A knowledge of linear algebra and analysis is assumed. The construction of mathematical models using Hilbert space theory is illustrated with problems and results are evaluated. For the first time, mathematical models based on reproducing kernel Hilbert spaces and causal operators are explained at an introductory level.
Book Synopsis Hilbert Space Methods in Signal Processing by : Rodney A. Kennedy
Download or read book Hilbert Space Methods in Signal Processing written by Rodney A. Kennedy and published by Cambridge University Press. This book was released on 2013-03-07 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to Hilbert spaces, combining the theory with applications of Hilbert methods in signal processing.
Book Synopsis Mathematical Methods in Physics by : Philippe Blanchard
Download or read book Mathematical Methods in Physics written by Philippe Blanchard and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics has long been regarded as a wellspring of mathematical problems. Mathematical Methods in Physics is a self-contained presentation, driven by historic motivations, excellent examples, detailed proofs, and a focus on those parts of mathematics that are needed in more ambitious courses on quantum mechanics and classical and quantum field theory. Aimed primarily at a broad community of graduate students in mathematics, mathematical physics, physics and engineering, as well as researchers in these disciplines.
Author :Edited by Paul F. Kisak Publisher :Createspace Independent Publishing Platform ISBN 13 :9781523323999 Total Pages :190 pages Book Rating :4.3/5 (239 download)
Book Synopsis Hilbert Space by : Edited by Paul F. Kisak
Download or read book Hilbert Space written by Edited by Paul F. Kisak and published by Createspace Independent Publishing Platform. This book was released on 2016-01-07 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane and three-dimensional space to spaces with any finite or infinite number of dimensions. A Hilbert space is an abstract vector space possessing the structure of an inner product that allows length and angle to be measured. Furthermore, Hilbert spaces are complete: there are enough limits in the space to allow the techniques of calculus to be used. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as infinite-dimensional function spaces. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer)-and ergodic theory, which forms the mathematical underpinning of thermodynamics. John von Neumann coined the term Hilbert space for the abstract concept that underlies many of these diverse applications. The success of Hilbert space methods ushered in a very fruitful era for functional analysis. Apart from the classical Euclidean spaces, examples of Hilbert spaces include spaces of square-integrable functions, spaces of sequences, Sobolev spaces consisting of generalized functions, and Hardy spaces of holomorphic functions. This book gives a mathematical overview of the definition and use of Hilbert Space.
Book Synopsis Hilbert Space Methods in Partial Differential Equations by : Ralph E. Showalter
Download or read book Hilbert Space Methods in Partial Differential Equations written by Ralph E. Showalter and published by Courier Corporation. This book was released on 2011-09-12 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.
Book Synopsis Elements of Hilbert Spaces and Operator Theory by : Harkrishan Lal Vasudeva
Download or read book Elements of Hilbert Spaces and Operator Theory written by Harkrishan Lal Vasudeva and published by Springer. This book was released on 2017-03-27 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.
Book Synopsis Linear Operator Theory in Engineering and Science by : Arch W. Naylor
Download or read book Linear Operator Theory in Engineering and Science written by Arch W. Naylor and published by Springer Science & Business Media. This book was released on 1982 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a unique introduction to the theory of linear operators on Hilbert space. The authors' goal is to present the basic facts of functional analysis in a form suitable for engineers, scientists, and applied mathematicians. Although the Definition-Theorem-Proof format of mathematics is used, careful attention is given to motivation of the material covered and many illustrative examples are presented. First published in 1971, Linear Operator in Engineering and Sciences has since proved to be a popular and very useful textbook.
Book Synopsis Hilbert Space Methods in Signal Processing by : Rodney A. Kennedy
Download or read book Hilbert Space Methods in Signal Processing written by Rodney A. Kennedy and published by Cambridge University Press. This book was released on 2013-03-07 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lively and accessible book describes the theory and applications of Hilbert spaces and also presents the history of the subject to reveal the ideas behind theorems and the human struggle that led to them. The authors begin by establishing the concept of 'countably infinite', which is central to the proper understanding of separable Hilbert spaces. Fundamental ideas such as convergence, completeness and dense sets are first demonstrated through simple familiar examples and then formalised. Having addressed fundamental topics in Hilbert spaces, the authors then go on to cover the theory of bounded, compact and integral operators at an advanced but accessible level. Finally, the theory is put into action, considering signal processing on the unit sphere, as well as reproducing kernel Hilbert spaces. The text is interspersed with historical comments about central figures in the development of the theory, which helps bring the subject to life.
Book Synopsis Mathematical Methods in Science and Engineering by : Selcuk S. Bayin
Download or read book Mathematical Methods in Science and Engineering written by Selcuk S. Bayin and published by John Wiley & Sons. This book was released on 2006-09-01 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: An innovative treatment of mathematical methods for a multidisciplinary audience Clearly and elegantly presented, Mathematical Methods in Science and Engineering provides a coherent treatment of mathematical methods, bringing advanced mathematical tools to a multidisciplinary audience. The growing interest in interdisciplinary studies has brought scientists from many disciplines such as physics, mathematics, chemistry, biology, economics, and finance together, which has increased the demand for courses in upper-level mathematical techniques. This book succeeds in not only being tuned in to the existing practical needs of this multidisciplinary audience, but also plays a role in the development of new interdisciplinary science by introducing new techniques to students and researchers. Mathematical Methods in Science and Engineering's modular structure affords instructors enough flexibility to use this book for several different advanced undergraduate and graduate level courses. Each chapter serves as a review of its subject and can be read independently, thus it also serves as a valuable reference and refresher for scientists and beginning researchers. There are a growing number of research areas in applied sciences, such as earthquakes, rupture, financial markets, and crashes, that employ the techniques of fractional calculus and path integrals. The book's two unique chapters on these subjects, written in a style that makes these advanced techniques accessible to a multidisciplinary audience, are an indispensable tool for researchers and instructors who want to add something new to their compulsory courses. Mathematical Methods in Science and Engineering includes: * Comprehensive chapters on coordinates and tensors and on continuous groups and their representations * An emphasis on physical motivation and the multidisciplinary nature of the methods discussed * A coherent treatment of carefully selected topics in a style that makes advanced mathematical tools accessible to a multidisciplinary audience * Exercises at the end of every chapter and plentiful examples throughout the book Mathematical Methods in Science and Engineering is not only appropriate as a text for advanced undergraduate and graduate physics programs, but is also appropriate for engineering science and mechanical engineering departments due to its unique chapter coverage and easily accessible style. Readers are expected to be familiar with topics typically covered in the first three years of science and engineering undergraduate programs. Thoroughly class-tested, this book has been used in classes by more than 1,000 students over the past eighteen years.
Book Synopsis Robust Control Theory in Hilbert Space by : Avraham Feintuch
Download or read book Robust Control Theory in Hilbert Space written by Avraham Feintuch and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: An operator theoretic approach to robust control analysis for linear time-varying systems, with the emphasis on the conceptual similarity with the H control theory for time-invariant systems. It clarifies the major difficulties confronted in the time varying case and all the necessary operator theory is developed from first principles, making the book as self-contained as possible. After presenting the necessary results from the theories of Toeplitz operators and nest algebras, linear systems are defined as input-output operators and the relationship between stabilisation and the existence of co-prime factorisations is described. Uniform optimal control problems are formulated as model-matching problems and are reduced to four block problems, while robustness is considered both from the point of view of fractional representations and the "time varying gap" metric, as is the relationship between these types of uncertainties. The book closes with the solution of the orthogonal embedding problem for time-varying contractive systems. As such, this book is useful to both mathematicians and to control engineers.
Book Synopsis Applied Analysis by the Hilbert Space Method by : Samuel S. Holland
Download or read book Applied Analysis by the Hilbert Space Method written by Samuel S. Holland and published by Courier Corporation. This book was released on 2012-05-04 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerous worked examples and exercises highlight this unified treatment. Simple explanations of difficult subjects make it accessible to undergraduates as well as an ideal self-study guide. 1990 edition.
Book Synopsis An Introduction to the Theory of Reproducing Kernel Hilbert Spaces by : Vern I. Paulsen
Download or read book An Introduction to the Theory of Reproducing Kernel Hilbert Spaces written by Vern I. Paulsen and published by Cambridge University Press. This book was released on 2016-04-11 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique introduction to reproducing kernel Hilbert spaces, covering the fundamental underlying theory as well as a range of applications.
Book Synopsis Hilbert Spaces and Its Applications by : Michael Argyros
Download or read book Hilbert Spaces and Its Applications written by Michael Argyros and published by . This book was released on 2021 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains numerous selected contemporary topics, primarily in Hilbert space, although related extended material in Banach spaces and Riemannian manifolds is also included. A plethora of concrete problems from diverse disciplines are explored, such as: applied mathematics; mathematical biology; chemistry; economics; physics; scientific computing, and engineering. The solutions of such equations can only be found in closed form in special cases; this forces researchers and practitioners to focus on the development of iterative methods to generate a sequence converging to the solutions, provided that some convergence criteria depending on the initial data are satisfied. Due to the exponential development of technology, new iterative methods should be found to improve existing computers and create faster and more efficient ones. We have no doubt that this book will contribute significantly to the enrichment of knowledge and problem solving in the field of Hilbert spaces and related topics.
Book Synopsis Introduction to Partial Differential Equations and Hilbert Space Methods by : Karl E. Gustafson
Download or read book Introduction to Partial Differential Equations and Hilbert Space Methods written by Karl E. Gustafson and published by Courier Corporation. This book was released on 2012-04-26 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Easy-to-use text examines principal method of solving partial differential equations, 1st-order systems, computation methods, and much more. Over 600 exercises, with answers for many. Ideal for a 1-semester or full-year course.
Book Synopsis Introduction to Hilbert Spaces with Applications by : Lokenath Debnath
Download or read book Introduction to Hilbert Spaces with Applications written by Lokenath Debnath and published by Elsevier. This book was released on 2005-09-29 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the success of the two previous editions, Introduction to Hilbert Spaces with Applications, Third Edition, offers an overview of the basic ideas and results of Hilbert space theory and functional analysis. It acquaints students with the Lebesgue integral, and includes an enhanced presentation of results and proofs. Students and researchers will benefit from the wealth of revised examples in new, diverse applications as they apply to optimization, variational and control problems, and problems in approximation theory, nonlinear instability, and bifurcation. The text also includes a popular chapter on wavelets that has been completely updated. Students and researchers agree that this is the definitive text on Hilbert Space theory. - Updated chapter on wavelets - Improved presentation on results and proof - Revised examples and updated applications - Completely updated list of references
Book Synopsis Variational Methods in Mathematics, Science and Engineering by : Karel Rektorys
Download or read book Variational Methods in Mathematics, Science and Engineering written by Karel Rektorys and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: The impulse which led to the writing of the present book has emerged from my many years of lecturing in special courses for selected students at the College of Civil Engineering of the Tech nical University in Prague, from experience gained as supervisor and consultant to graduate students-engineers in the field of applied mathematics, and - last but not least - from frequent consultations with technicians as well as with physicists who have asked for advice in overcoming difficulties encountered in solving theoretical problems. Even though a varied combination of problems of the most diverse nature was often in question, the problems discussed in this book stood forth as the most essential to this category of specialists. The many discussions I have had gave rise to considerations on writing a book which should fill the rather unfortunate gap in our literature. The book is designed, in the first place, for specialists in the fields of theoretical engineering and science. However, it was my aim that the book should be of interest to mathematicians as well. I have been well aware what an ungrateful task it may be to write a book of the present type, and what problems such an effort can bring: Technicians and physicists on the one side, and mathematicians on the other, are often of diametrically opposing opinions as far as books con ceived for both these categories are concerned.
Book Synopsis Optimization by Vector Space Methods by : David G. Luenberger
Download or read book Optimization by Vector Space Methods written by David G. Luenberger and published by John Wiley & Sons. This book was released on 1997-01-23 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.