Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics

Download Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034874863
Total Pages : 172 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics by : Y.-T. Siu

Download or read book Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics written by Y.-T. Siu and published by Birkhäuser. This book was released on 2012-12-06 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on the lectures I delivered at the German Mathematical Society Seminar in Schloss Michkeln in DUsseldorf in June. 1986 on Hermitian-Einstein metrics for stable bundles and Kahler-Einstein metrics. The purpose of these notes is to present to the reader the state-of-the-art results in the simplest and the most comprehensible form using (at least from my own subjective viewpoint) the most natural approach. The presentation in these notes is reasonably self-contained and prerequisi tes are kept to a minimum. Most steps in the estimates are reduced as much as possible to the most basic procedures such as integration by parts and the maximum principle. When less basic procedures are used such as the Sobolev and Calderon-Zygmund inequalities and the interior Schauder estimates. references are given for the reader to look them up. A considerable amount of heuristic and intuitive discussions are included to explain why certain steps are used or certain notions introduced. The inclusion of such discussions makes the style of the presentation at some places more conversational than what is usually expected of rigorous mathemtical prese"ntations. For the problems of Hermi tian-Einstein metrics for stable bundles and Kahler-Einstein metrics one can use either the continuity method or the heat equation method. These two methods are so very intimately related that in many cases the relationship betwen them borders on equivalence. What counts most is the a. priori estimates. The kind of scaffolding one hangs the a.

Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics

Download Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 171 pages
Book Rating : 4.:/5 (53 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics by : Yum-Tong Siu

Download or read book Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics written by Yum-Tong Siu and published by . This book was released on 1987 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Hermitian-Einstein Metrics for Stable Bundles and Kahler-Einstein Metrics

Download Hermitian-Einstein Metrics for Stable Bundles and Kahler-Einstein Metrics PDF Online Free

Author :
Publisher :
ISBN 13 : 9783034874878
Total Pages : 176 pages
Book Rating : 4.8/5 (748 download)

DOWNLOAD NOW!


Book Synopsis Hermitian-Einstein Metrics for Stable Bundles and Kahler-Einstein Metrics by : Y. T. Siu

Download or read book Hermitian-Einstein Metrics for Stable Bundles and Kahler-Einstein Metrics written by Y. T. Siu and published by . This book was released on 1987-01-01 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt:

An Introduction to Extremal Kahler Metrics

Download An Introduction to Extremal Kahler Metrics PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470410478
Total Pages : 210 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Extremal Kahler Metrics by : Gábor Székelyhidi

Download or read book An Introduction to Extremal Kahler Metrics written by Gábor Székelyhidi and published by American Mathematical Soc.. This book was released on 2014-06-19 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.

Advances in Complex Geometry

Download Advances in Complex Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470443333
Total Pages : 272 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Advances in Complex Geometry by : Yanir A. Rubinstein

Download or read book Advances in Complex Geometry written by Yanir A. Rubinstein and published by American Mathematical Soc.. This book was released on 2019-08-26 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains contributions from speakers at the 2015–2018 joint Johns Hopkins University and University of Maryland Complex Geometry Seminar. It begins with a survey article on recent developments in pluripotential theory and its applications to Kähler–Einstein metrics and continues with articles devoted to various aspects of the theory of complex manifolds and functions on such manifolds.

Lectures on Kähler Manifolds

Download Lectures on Kähler Manifolds PDF Online Free

Author :
Publisher : European Mathematical Society
ISBN 13 : 9783037190258
Total Pages : 190 pages
Book Rating : 4.1/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Kähler Manifolds by : Werner Ballmann

Download or read book Lectures on Kähler Manifolds written by Werner Ballmann and published by European Mathematical Society. This book was released on 2006 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on lectures the author gave at the University of Bonn and the Erwin Schrodinger Institute in Vienna. The aim is to give a thorough introduction to the theory of Kahler manifolds with special emphasis on the differential geometric side of Kahler geometry. The exposition starts with a short discussion of complex manifolds and holomorphic vector bundles and a detailed account of the basic differential geometric properties of Kahler manifolds. The more advanced topics are the cohomology of Kahler manifolds, Calabi conjecture, Gromov's Kahler hyperbolic spaces, and the Kodaira embedding theorem. Some familiarity with global analysis and partial differential equations is assumed, in particular in the part on the Calabi conjecture. There are appendices on Chern-Weil theory, symmetric spaces, and $L^2$-cohomology.

The Kobayashi-Hitchin Correspondence

Download The Kobayashi-Hitchin Correspondence PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810221683
Total Pages : 268 pages
Book Rating : 4.2/5 (216 download)

DOWNLOAD NOW!


Book Synopsis The Kobayashi-Hitchin Correspondence by : Martin Lbke

Download or read book The Kobayashi-Hitchin Correspondence written by Martin Lbke and published by World Scientific. This book was released on 1995 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: By the Kobayashi-Hitchin correspondence, the authors of this book mean the isomorphy of the moduli spaces Mst of stable holomorphic resp. MHE of irreducible Hermitian-Einstein structures in a differentiable complex vector bundle on a compact complex manifold. They give a complete proof of this result in the most general setting, and treat several applications and some new examples.After discussing the stability concept on arbitrary compact complex manifolds in Chapter 1, the authors consider, in Chapter 2, Hermitian-Einstein structures and prove the stability of irreducible Hermitian-Einstein bundles. This implies the existence of a natural map I from MHE to Mst which is bijective by the result of (the rather technical) Chapter 3. In Chapter 4 the moduli spaces involved are studied in detail, in particular it is shown that their natural analytic structures are isomorphic via I. Also a comparison theorem for moduli spaces of instantons resp. stable bundles is proved; this is the form in which the Kobayashi-Hitchin has been used in Donaldson theory to study differentiable structures of complex surfaces. The fact that I is an isomorphism of real analytic spaces is applied in Chapter 5 to show the openness of the stability condition and the existence of a natural Hermitian metric in the moduli space, and to study, at least in some cases, the dependence of Mst on the base metric used to define stability. Another application is a rather simple proof of Bogomolov's theorem on surfaces of type VI0. In Chapter 6, some moduli spaces of stable bundles are calculated to illustrate what can happen in the general (i.e. not necessarily Kahler) case compared to the algebraic or Kahler one. Finally, appendices containing results, especially from Hermitian geometry and analysis, in the form they are used in the main part of the book are included."

Differential Geometry of Complex Vector Bundles

Download Differential Geometry of Complex Vector Bundles PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400858682
Total Pages : 317 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry of Complex Vector Bundles by : Shoshichi Kobayashi

Download or read book Differential Geometry of Complex Vector Bundles written by Shoshichi Kobayashi and published by Princeton University Press. This book was released on 2014-07-14 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Existence of Extremal Kahler Metrics on Compact Complex Manifolds, and a Partial Converse to a Theorem of Lichnerowicz

Download Existence of Extremal Kahler Metrics on Compact Complex Manifolds, and a Partial Converse to a Theorem of Lichnerowicz PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 108 pages
Book Rating : 4.:/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Existence of Extremal Kahler Metrics on Compact Complex Manifolds, and a Partial Converse to a Theorem of Lichnerowicz by : Andrew David Hwang

Download or read book Existence of Extremal Kahler Metrics on Compact Complex Manifolds, and a Partial Converse to a Theorem of Lichnerowicz written by Andrew David Hwang and published by . This book was released on 1993 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geometric and Spectral Analysis

Download Geometric and Spectral Analysis PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470410435
Total Pages : 378 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Geometric and Spectral Analysis by : Pierre Albin

Download or read book Geometric and Spectral Analysis written by Pierre Albin and published by American Mathematical Soc.. This book was released on 2014-12-01 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 2012, the Centre de Recherches Mathématiques was at the center of many interesting developments in geometric and spectral analysis, with a thematic program on Geometric Analysis and Spectral Theory followed by a thematic year on Moduli Spaces, Extremality and Global Invariants. This volume contains original contributions as well as useful survey articles of recent developments by participants from three of the workshops organized during these programs: Geometry of Eigenvalues and Eigenfunctions, held from June 4-8, 2012; Manifolds of Metrics and Probabilistic Methods in Geometry and Analysis, held from July 2-6, 2012; and Spectral Invariants on Non-compact and Singular Spaces, held from July 23-27, 2012. The topics covered in this volume include Fourier integral operators, eigenfunctions, probability and analysis on singular spaces, complex geometry, Kähler-Einstein metrics, analytic torsion, and Strichartz estimates. This book is co-published with the Centre de Recherches Mathématiques.

Complex Non-Kähler Geometry

Download Complex Non-Kähler Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030258831
Total Pages : 256 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Complex Non-Kähler Geometry by : Sławomir Dinew

Download or read book Complex Non-Kähler Geometry written by Sławomir Dinew and published by Springer Nature. This book was released on 2019-11-05 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collecting together the lecture notes of the CIME Summer School held in Cetraro in July 2018, the aim of the book is to introduce a vast range of techniques which are useful in the investigation of complex manifolds. The school consisted of four courses, focusing on both the construction of non-Kähler manifolds and the understanding of a possible classification of complex non-Kähler manifolds. In particular, the courses by Alberto Verjovsky and Andrei Teleman introduced tools in the theory of foliations and analytic techniques for the classification of compact complex surfaces and compact Kähler manifolds, respectively. The courses by Sebastien Picard and Sławomir Dinew focused on analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-Kähler geometry.

Analysis, Complex Geometry, and Mathematical Physics

Download Analysis, Complex Geometry, and Mathematical Physics PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470414643
Total Pages : 388 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Analysis, Complex Geometry, and Mathematical Physics by : Paul M. N. Feehan

Download or read book Analysis, Complex Geometry, and Mathematical Physics written by Paul M. N. Feehan and published by American Mathematical Soc.. This book was released on 2015-07-21 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Conference on Analysis, Complex Geometry and Mathematical Physics: In Honor of Duong H. Phong, which was held from May 7-11, 2013, at Columbia University, New York. The conference featured thirty speakers who spoke on a range of topics reflecting the breadth and depth of the research interests of Duong H. Phong on the occasion of his sixtieth birthday. A common thread, familiar from Phong's own work, was the focus on the interplay between the deep tools of analysis and the rich structures of geometry and physics. Papers included in this volume cover topics such as the complex Monge-Ampère equation, pluripotential theory, geometric partial differential equations, theories of integral operators, integrable systems and perturbative superstring theory.

The Kobayashi-hitchin Correspondence

Download The Kobayashi-hitchin Correspondence PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814500828
Total Pages : 265 pages
Book Rating : 4.8/5 (145 download)

DOWNLOAD NOW!


Book Synopsis The Kobayashi-hitchin Correspondence by : Martin Lubke

Download or read book The Kobayashi-hitchin Correspondence written by Martin Lubke and published by World Scientific. This book was released on 1995-09-30 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: By the Kobayashi-Hitchin correspondence, the authors of this book mean the isomorphy of the moduli spaces Mst of stable holomorphic — resp. MHE of irreducible Hermitian-Einstein — structures in a differentiable complex vector bundle on a compact complex manifold. They give a complete proof of this result in the most general setting, and treat several applications and some new examples.After discussing the stability concept on arbitrary compact complex manifolds in Chapter 1, the authors consider, in Chapter 2, Hermitian-Einstein structures and prove the stability of irreducible Hermitian-Einstein bundles. This implies the existence of a natural map I from MHE to Mst which is bijective by the result of (the rather technical) Chapter 3. In Chapter 4 the moduli spaces involved are studied in detail, in particular it is shown that their natural analytic structures are isomorphic via I. Also a comparison theorem for moduli spaces of instantons resp. stable bundles is proved; this is the form in which the Kobayashi-Hitchin has been used in Donaldson theory to study differentiable structures of complex surfaces. The fact that I is an isomorphism of real analytic spaces is applied in Chapter 5 to show the openness of the stability condition and the existence of a natural Hermitian metric in the moduli space, and to study, at least in some cases, the dependence of Mst on the base metric used to define stability. Another application is a rather simple proof of Bogomolov's theorem on surfaces of type VII0. In Chapter 6, some moduli spaces of stable bundles are calculated to illustrate what can happen in the general (i.e. not necessarily Kähler) case compared to the algebraic or Kähler one. Finally, appendices containing results, especially from Hermitian geometry and analysis, in the form they are used in the main part of the book are included.

An Introduction to the Kähler-Ricci Flow

Download An Introduction to the Kähler-Ricci Flow PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319008196
Total Pages : 342 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Kähler-Ricci Flow by : Sebastien Boucksom

Download or read book An Introduction to the Kähler-Ricci Flow written by Sebastien Boucksom and published by Springer. This book was released on 2013-10-02 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries.

Donaldson Type Invariants for Algebraic Surfaces

Download Donaldson Type Invariants for Algebraic Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540939121
Total Pages : 404 pages
Book Rating : 4.5/5 (49 download)

DOWNLOAD NOW!


Book Synopsis Donaldson Type Invariants for Algebraic Surfaces by : Takuro Mochizuki

Download or read book Donaldson Type Invariants for Algebraic Surfaces written by Takuro Mochizuki and published by Springer Science & Business Media. This book was released on 2009-03-26 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: We are defining and studying an algebro-geometric analogue of Donaldson invariants by using moduli spaces of semistable sheaves with arbitrary ranks on a polarized projective surface.We are interested in relations among the invariants, which are natural generalizations of the "wall-crossing formula" and the "Witten conjecture" for classical Donaldson invariants. Our goal is to obtain a weaker version of these relations, by systematically using the intrinsic smoothness of moduli spaces. According to the recent excellent work of L. Goettsche, H. Nakajima and K. Yoshioka, the wall-crossing formula for Donaldson invariants of projective surfaces can be deduced from such a weaker result in the rank two case!

Lectures on Kähler Geometry

Download Lectures on Kähler Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139463004
Total Pages : 4 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Kähler Geometry by : Andrei Moroianu

Download or read book Lectures on Kähler Geometry written by Andrei Moroianu and published by Cambridge University Press. This book was released on 2007-03-29 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kähler geometry is a beautiful and intriguing area of mathematics, of substantial research interest to both mathematicians and physicists. This self-contained graduate text provides a concise and accessible introduction to the topic. The book begins with a review of basic differential geometry, before moving on to a description of complex manifolds and holomorphic vector bundles. Kähler manifolds are discussed from the point of view of Riemannian geometry, and Hodge and Dolbeault theories are outlined, together with a simple proof of the famous Kähler identities. The final part of the text studies several aspects of compact Kähler manifolds: the Calabi conjecture, Weitzenböck techniques, Calabi–Yau manifolds, and divisors. All sections of the book end with a series of exercises and students and researchers working in the fields of algebraic and differential geometry and theoretical physics will find that the book provides them with a sound understanding of this theory.

Strings and Geometry

Download Strings and Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821837153
Total Pages : 396 pages
Book Rating : 4.8/5 (371 download)

DOWNLOAD NOW!


Book Synopsis Strings and Geometry by : Clay Mathematics Institute. Summer School

Download or read book Strings and Geometry written by Clay Mathematics Institute. Summer School and published by American Mathematical Soc.. This book was released on 2004 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.