Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Heckes Theory Of Modular Forms And Dirichlet Series 2nd Printing And Revisions
Download Heckes Theory Of Modular Forms And Dirichlet Series 2nd Printing And Revisions full books in PDF, epub, and Kindle. Read online Heckes Theory Of Modular Forms And Dirichlet Series 2nd Printing And Revisions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Hecke's Theory of Modular Forms and Dirichlet Series by : Bruce C. Berndt
Download or read book Hecke's Theory of Modular Forms and Dirichlet Series written by Bruce C. Berndt and published by World Scientific. This book was released on 2008 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cyber security, encompassing both information and network security, is of utmost importance in today's information age. Cyber Security Standards, Practices and Industrial Applications: Systems and Methodologies details the latest and most important advances in security standards. First, it introduces the differences between information security (covers the understanding of security requirements, classification of threats, attacks and information protection systems and methodologies) and network security (includes both security protocols as well as systems which create a security perimeter around networks for intrusion detection and avoidance). In addition, the book serves as an essential reference to students, researchers, practitioners, and consultants in the area of social media, cyber security and information, and communication technologies (ICT).
Book Synopsis Hecke's Theory Of Modular Forms And Dirichlet Series (2nd Printing And Revisions) by : Bruce C Berndt
Download or read book Hecke's Theory Of Modular Forms And Dirichlet Series (2nd Printing And Revisions) written by Bruce C Berndt and published by World Scientific. This book was released on 2007-12-31 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1938, at the Institute for Advanced Study, E Hecke gave a series of lectures on his theory of correspondence between modular forms and Dirichlet series. Since then, the Hecke correspondence has remained an active feature of number theory and, indeed, it is more important today than it was in 1936 when Hecke published his original papers.This book is an amplified and up-to-date version of the former author's lectures at the University of Illinois at Urbana-Champaign, based on Hecke's notes. Providing many details omitted from Hecke's notes, it includes various new and important developments in recent years. In particular, several generalizations and analogues of the original Hecke theory are briefly described in this concise volume.
Book Synopsis Modular And Automorphic Forms & Beyond by : Hossein Movasati
Download or read book Modular And Automorphic Forms & Beyond written by Hossein Movasati and published by World Scientific. This book was released on 2021-10-12 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: The guiding principle in this monograph is to develop a new theory of modular forms which encompasses most of the available theory of modular forms in the literature, such as those for congruence groups, Siegel and Hilbert modular forms, many types of automorphic forms on Hermitian symmetric domains, Calabi-Yau modular forms, with its examples such as Yukawa couplings and topological string partition functions, and even go beyond all these cases. Its main ingredient is the so-called 'Gauss-Manin connection in disguise'.
Book Synopsis Analytic And Combinatorial Number Theory: The Legacy Of Ramanujan - Contributions In Honor Of Bruce C. Berndt by : George E Andrews
Download or read book Analytic And Combinatorial Number Theory: The Legacy Of Ramanujan - Contributions In Honor Of Bruce C. Berndt written by George E Andrews and published by World Scientific. This book was released on 2024-08-19 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reflects the contributions stemming from the conference Analytic and Combinatorial Number Theory: The Legacy of Ramanujan which took place at the University of Illinois at Urbana-Champaign on June 6-9, 2019. The conference included 26 plenary talks, 71 contributed talks, and 170 participants. As was the case for the conference, this book is in honor of Bruce C Berndt and in celebration of his mathematics and his 80th birthday.Along with a number of papers previously appearing in Special Issues of the International Journal of Number Theory, the book collects together a few more papers, a biography of Bruce by Atul Dixit and Ae Ja Yee, a preface by George Andrews, a gallery of photos from the conference, a number of speeches from the conference banquet, the conference poster, a list of Bruce's publications at the time this volume was created, and a list of the talks from the conference.
Book Synopsis Analytic Methods In Number Theory: When Complex Numbers Count by : Wadim Zudilin
Download or read book Analytic Methods In Number Theory: When Complex Numbers Count written by Wadim Zudilin and published by World Scientific. This book was released on 2023-08-22 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is no surprise that arithmetic properties of integral ('whole') numbers are controlled by analytic functions of complex variable. At the same time, the values of analytic functions themselves happen to be interesting numbers, for which we often seek explicit expressions in terms of other 'better known' numbers or try to prove that no such exist. This natural symbiosis of number theory and analysis is centuries old but keeps enjoying new results, ideas and methods.The present book takes a semi-systematic review of analytic achievements in number theory ranging from classical themes about primes, continued fractions, transcendence of π and resolution of Hilbert's seventh problem to some recent developments on the irrationality of the values of Riemann's zeta function, sizes of non-cyclotomic algebraic integers and applications of hypergeometric functions to integer congruences.Our principal goal is to present a variety of different analytic techniques that are used in number theory, at a reasonably accessible — almost popular — level, so that the materials from this book can suit for teaching a graduate course on the topic or for a self-study. Exercises included are of varying difficulty and of varying distribution within the book (some chapters get more than other); they not only help the reader to consolidate their understanding of the material but also suggest directions for further study and investigation. Furthermore, the end of each chapter features brief notes about relevant developments of the themes discussed.
Book Synopsis Topics And Methods In Q-series by : James Mc Laughlin
Download or read book Topics And Methods In Q-series written by James Mc Laughlin and published by World Scientific. This book was released on 2017-09-22 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a comprehensive introduction to the many aspects of the subject of basic hypergeometric series. The book essentially assumes no prior knowledge but eventually provides a comprehensive introduction to many important topics. After developing a treatment of historically important topics such as the q-binomial theorem, Heine's transformation, the Jacobi triple product identity, Ramanujan's 1-psi-1 summation formula, Bailey's 6-psi-6 summation formula and the Rogers-Fine identity, the book goes on to delve more deeply into important topics such as Bailey- and WP-Bailey pairs and chains, q-continued fractions, and mock theta functions. There are also chapters on other topics such as Lambert series and combinatorial proofs of basic hypergeometric identities.The book could serve as a textbook for the subject at the graduate level and as a textbook for a topic course at the undergraduate level (earlier chapters). It could also serve as a reference work for researchers in the area.
Book Synopsis Recent Progress On Topics Of Ramanujan Sums And Cotangent Sums Associated With The Riemann Hypothesis by : Helmut Maier
Download or read book Recent Progress On Topics Of Ramanujan Sums And Cotangent Sums Associated With The Riemann Hypothesis written by Helmut Maier and published by World Scientific. This book was released on 2021-12-28 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph, we study recent results on some categories of trigonometric/exponential sums along with various of their applications in Mathematical Analysis and Analytic Number Theory. Through the two chapters of this monograph, we wish to highlight the applicability and breadth of techniques of trigonometric/exponential sums in various problems focusing on the interplay of Mathematical Analysis and Analytic Number Theory. We wish to stress the point that the goal is not only to prove the desired results, but also to present a plethora of intermediate Propositions and Corollaries investigating the behaviour of such sums, which can also be applied in completely different problems and settings than the ones treated within this monograph.In the present work we mainly focus on the applications of trigonometric/exponential sums in the study of Ramanujan sums — which constitute a very classical domain of research in Number Theory — as well as the study of certain cotangent sums with a wide range of applications, especially in the study of Dedekind sums and a facet of the research conducted on the Riemann Hypothesis. For example, in our study of the cotangent sums treated within the second chapter, the methods and techniques employed reveal unexpected connections with independent and very interesting problems investigated in the past by R de la Bretèche and G Tenenbaum on trigonometric series, as well as by S Marmi, P Moussa and J-C Yoccoz on Dynamical Systems.Overall, a reader who has mastered fundamentals of Mathematical Analysis, as well as having a working knowledge of Classical and Analytic Number Theory, will be able to gradually follow all the parts of the monograph. Therefore, the present monograph will be of interest to advanced undergraduate and graduate students as well as researchers who wish to be informed on the latest developments on the topics treated.
Book Synopsis The Theory Of Multiple Zeta Values With Applications In Combinatorics by : Minking Eie
Download or read book The Theory Of Multiple Zeta Values With Applications In Combinatorics written by Minking Eie and published by World Scientific. This book was released on 2013-05-22 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book on the theory of multiple zeta values since its birth around 1994. Readers will find that the shuffle products of multiple zeta values are applied to complicated counting problems in combinatorics, and numerous interesting identities are produced that are ready to be used. This will provide a powerful tool to deal with problems in multiple zeta values, both in evaluations and shuffle relations. The volume will benefit graduate students doing research in number theory.
Book Synopsis Development of Elliptic Functions According to Ramanujan by : K. Venkatachaliengar
Download or read book Development of Elliptic Functions According to Ramanujan written by K. Venkatachaliengar and published by World Scientific. This book was released on 2012 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book provides an innovative and efficient approach to elliptic functions, based on the ideas of the great Indian mathematician Srinivasa Ramanujan. The original 1988 monograph of K Venkatachaliengar has been completely revised. Many details, omitted from the original version, have been included, and the book has been made comprehensive by notes at the end of each chapter. The book is for graduate students and researchers in Number Theory and Classical Analysis, as well for scholars and aficionados of Ramanujan's work. It can be read by anyone with some undergraduate knowledge of real and complex analysis.
Book Synopsis Modular Forms by : Toshitsune Miyake
Download or read book Modular Forms written by Toshitsune Miyake and published by Springer Science & Business Media. This book was released on 2006-02-17 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a translation of the earlier book written by Koji Doi and the author, who revised it substantially for this English edition. It offers the basic knowledge of elliptic modular forms necessary to understand recent developments in number theory. It also treats the unit groups of quaternion algebras, rarely dealt with in books; and in the last chapter, Eisenstein series with parameter are discussed following the recent work of Shimura.
Author :A. N. Andrianov V. G. Zhuravlev Publisher :American Mathematical Soc. ISBN 13 :9780821897621 Total Pages :350 pages Book Rating :4.8/5 (976 download)
Book Synopsis Modular forms and Hecke operators by : A. N. Andrianov V. G. Zhuravlev
Download or read book Modular forms and Hecke operators written by A. N. Andrianov V. G. Zhuravlev and published by American Mathematical Soc.. This book was released on 1995-08-28 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of Hecke operators was so simple and natural that, soon after Hecke's work, scholars made the attempt to develop a Hecke theory for modular forms, such as Siegel modular forms. As this theory developed, the Hecke operators on spaces of modular forms in several variables were found to have arithmetic meaning. Specifically, the theory provided a framework for discovering certain multiplicative properties of the number of integer representations of quadratic forms by quadratic forms. Now that the theory has matured, the time is right for this detailed and systematic exposition of its fundamental methods and results. Features: The book starts with the basics and ends with the latest results, explaining the current status of the theory of Hecke operators on spaces of holomorphic modular forms of integer and half-integer weight congruence-subgroups of integral symplectic groups. Hecke operators are considered principally as an instrument for studying the multiplicative properties of the Fourier coefficients of modular forms. It is the authors' intent that Modular Forms and Hecke Operators help attract young researchers to this beautiful and mysterious realm of number theory.
Book Synopsis Modular Forms and Hecke Operators by : Anatoliĭ Nikolaevich Andrianov
Download or read book Modular Forms and Hecke Operators written by Anatoliĭ Nikolaevich Andrianov and published by American Mathematical Soc.. This book was released on 1995 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of Hecke operators was so simple and natural that, soon after Hecke's work, scholars made the attempt to develop a Hecke theory for modular forms, such as Siegel modular forms. As this theory developed, the Hecke operators on spaces of modular forms in several variables were found to have arithmetic meaning. Specifically, the theory provided a framework for discovering certain multiplicative properties of the number of integer representations of quadratic forms by quadratic forms. Now that the theory has matured, the time is right for this detailed and systematic exposition of its fundamental methods and results. Modular Forms and Hecke Operators should help to attract young researchers to the beautiful and mysterious realm of number theory.
Book Synopsis Introduction to Siegel Modular Forms and Dirichlet Series by : Anatoli Andrianov
Download or read book Introduction to Siegel Modular Forms and Dirichlet Series written by Anatoli Andrianov and published by Springer Science & Business Media. This book was released on 2010-03-17 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several years ago I was invited to an American university to give one-term graduate course on Siegel modular forms, Hecke operators, and related zeta functions. The idea to present in a concise but basically complete and self-contained form an int- duction to an important and developing area based partly on my own work attracted me. I accepted the invitation and started to prepare the course. Unfortunately, the visit was not realized. But the idea of such a course continued to be alive till after a number of years this book was ?nally completed. I hope that this short book will serve to attract young researchers to this beautiful ?eld, and that it will simplify and make more pleasant the initial steps. No special knowledge is presupposed for reading this book beyond standard courses in algebra and calculus (one and several variables), although some skill in working with mathematical texts would be helpful. The reader will judge whether the result was worth the effort. Dedications. The ideas of Goro Shimura exerted a deep in?uence on the number theory of the second half of the twentieth century in general and on the author’s formation in particular. When Andre ` Weil was signing a copy of his “Basic Number Theory” to my son, he wrote in Russian, ”To Fedor Anatolievich hoping that he will become a number theoretist”. Fedor has chosen computer science. Now I pass on the idea to Fedor’s daughter, Alexandra Fedorovna.
Book Synopsis Modular Forms, a Computational Approach by : William A. Stein
Download or read book Modular Forms, a Computational Approach written by William A. Stein and published by American Mathematical Soc.. This book was released on 2007-02-13 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.
Book Synopsis Introduction to Modular Forms by : Serge Lang
Download or read book Introduction to Modular Forms written by Serge Lang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "This book gives a thorough introduction to several theories that are fundamental to research on modular forms. Most of the material, despite its importance, had previously been unavailable in textbook form. Complete and readable proofs are given... In conclusion, this book is a welcome addition to the literature for the growing number of students and mathematicians in other fields who want to understand the recent developments in the theory of modular forms." #Mathematical Reviews# "This book will certainly be indispensable to all those wishing to get an up-to-date initiation to the theory of modular forms." #Publicationes Mathematicae#
Book Synopsis Number Theory and Applications by : S.D. Adhikari
Download or read book Number Theory and Applications written by S.D. Adhikari and published by Springer. This book was released on 2009-06-15 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of articles contains the proceedings of the two international conferences (on Number Theory and Cryptography) held at the Harish - Chandra Research Institute. In recent years the interest in number theory has increased due to its applications in areas like error-correcting codes and cryptography. These proceedings contain papers in various areas of number theory, such as combinatorial, algebraic, analytic and transcendental aspects, arithmetic algebraic geometry, as well as graph theory and cryptography. While some papers do contain new results, several of the papers are expository articles that mention open questions, which will be useful to young researchers.
Book Synopsis The 1-2-3 of Modular Forms by : Jan Hendrik Bruinier
Download or read book The 1-2-3 of Modular Forms written by Jan Hendrik Bruinier and published by Springer Science & Business Media. This book was released on 2008-02-10 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.