Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes)

Download Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811202400
Total Pages : 5053 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) by : Cheng Few Lee

Download or read book Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) written by Cheng Few Lee and published by World Scientific. This book was released on 2020-07-30 with total page 5053 pages. Available in PDF, EPUB and Kindle. Book excerpt: This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.

Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning

Download Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning PDF Online Free

Author :
Publisher :
ISBN 13 : 9789811202445
Total Pages : 1365 pages
Book Rating : 4.2/5 (24 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning by :

Download or read book Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning written by and published by . This book was released on 2021 with total page 1365 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts. In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook. Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience"-- Provided by publisher.

Financial Econometrics, Mathematics and Statistics

Download Financial Econometrics, Mathematics and Statistics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493994298
Total Pages : 657 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Financial Econometrics, Mathematics and Statistics by : Cheng-Few Lee

Download or read book Financial Econometrics, Mathematics and Statistics written by Cheng-Few Lee and published by Springer. This book was released on 2019-06-03 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: This rigorous textbook introduces graduate students to the principles of econometrics and statistics with a focus on methods and applications in financial research. Financial Econometrics, Mathematics, and Statistics introduces tools and methods important for both finance and accounting that assist with asset pricing, corporate finance, options and futures, and conducting financial accounting research. Divided into four parts, the text begins with topics related to regression and financial econometrics. Subsequent sections describe time-series analyses; the role of binomial, multi-nomial, and log normal distributions in option pricing models; and the application of statistics analyses to risk management. The real-world applications and problems offer students a unique insight into such topics as heteroskedasticity, regression, simultaneous equation models, panel data analysis, time series analysis, and generalized method of moments. Written by leading academics in the quantitative finance field, allows readers to implement the principles behind financial econometrics and statistics through real-world applications and problem sets. This textbook will appeal to a less-served market of upper-undergraduate and graduate students in finance, economics, and statistics. ​

Financial Analysis, Planning And Forecasting: Theory And Application (Third Edition)

Download Financial Analysis, Planning And Forecasting: Theory And Application (Third Edition) PDF Online Free

Author :
Publisher : World Scientific Publishing Company
ISBN 13 : 981472386X
Total Pages : 1390 pages
Book Rating : 4.8/5 (147 download)

DOWNLOAD NOW!


Book Synopsis Financial Analysis, Planning And Forecasting: Theory And Application (Third Edition) by : Cheng Few Lee

Download or read book Financial Analysis, Planning And Forecasting: Theory And Application (Third Edition) written by Cheng Few Lee and published by World Scientific Publishing Company. This book was released on 2016-08-10 with total page 1390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction-level text that reviews, discusses, and integrates both theoretical and practical corporate analysis and planning. The field can be divided into five parts: (1) Information and Methodology for Financial Analysis; (2) Alternative Finance Theories and Cost of Capital; (3) Capital Budgeting and Leasing Decisions; (4) Corporate Policies and their Interrelationships; (5) Financial Planning and Forecasting.The theories used and discussed in this book can be grouped into the following classical theoretical areas of corporate finance: (1) Pre-M&M Theory, (2) M&M Theory, (3) CAPM, and (4) Option Pricing Theory (OPT). The interrelationships among these theories are carefully analyzed. Real world examples are used to enrich the learning experience; and alternative planning and forecasting models are used to show how the interdisciplinary approach can be used to make meaningful financial-management decisions.In this third edition, we have extensively updated and expanded the topics of financial analysis, planning and forecasting. New chapters were added, and some chapters combined to present a holistic view of the subject and much of the data revised and updated.

Machine Learning in Finance

Download Machine Learning in Finance PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030410684
Total Pages : 565 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in Finance by : Matthew F. Dixon

Download or read book Machine Learning in Finance written by Matthew F. Dixon and published by Springer Nature. This book was released on 2020-07-01 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.

Data Science and Machine Learning

Download Data Science and Machine Learning PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000730778
Total Pages : 538 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Data Science and Machine Learning by : Dirk P. Kroese

Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Empirical Asset Pricing

Download Empirical Asset Pricing PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262039370
Total Pages : 497 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Empirical Asset Pricing by : Wayne Ferson

Download or read book Empirical Asset Pricing written by Wayne Ferson and published by MIT Press. This book was released on 2019-03-12 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.

All of Statistics

Download All of Statistics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387217363
Total Pages : 446 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis All of Statistics by : Larry Wasserman

Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.

Statistics for Finance

Download Statistics for Finance PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315362554
Total Pages : 384 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Statistics for Finance by : Erik Lindström

Download or read book Statistics for Finance written by Erik Lindström and published by CRC Press. This book was released on 2018-09-03 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistics for Finance develops students’ professional skills in statistics with applications in finance. Developed from the authors’ courses at the Technical University of Denmark and Lund University, the text bridges the gap between classical, rigorous treatments of financial mathematics that rarely connect concepts to data and books on econometrics and time series analysis that do not cover specific problems related to option valuation. The book discusses applications of financial derivatives pertaining to risk assessment and elimination. The authors cover various statistical and mathematical techniques, including linear and nonlinear time series analysis, stochastic calculus models, stochastic differential equations, Itō’s formula, the Black–Scholes model, the generalized method-of-moments, and the Kalman filter. They explain how these tools are used to price financial derivatives, identify interest rate models, value bonds, estimate parameters, and much more. This textbook will help students understand and manage empirical research in financial engineering. It includes examples of how the statistical tools can be used to improve value-at-risk calculations and other issues. In addition, end-of-chapter exercises develop students’ financial reasoning skills.

Handbook Of Energy Finance: Theories, Practices And Simulations

Download Handbook Of Energy Finance: Theories, Practices And Simulations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813278390
Total Pages : 827 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Handbook Of Energy Finance: Theories, Practices And Simulations by : Stephane Goutte

Download or read book Handbook Of Energy Finance: Theories, Practices And Simulations written by Stephane Goutte and published by World Scientific. This book was released on 2020-01-30 with total page 827 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling the dynamics of energy markets has become a challenging task. The intensification of their financialization since 2004 had made them more complex but also more integrated with other tradable asset classes. More importantly, their large and frequent fluctuations in terms of both prices and volatility, particularly in the aftermath of the global financial crisis 2008-2009, posit difficulties for modeling and forecasting energy price behavior and are primary sources of concerns for macroeconomic stability and general economic performance.This handbook aims to advance the debate on the theories and practices of quantitative energy finance while shedding light on innovative results and technical methods applied to energy markets. Its primary focus is on the recent development and applications of mathematical and quantitative approaches for a better understanding of the stochastic processes that drive energy market movements. The handbook is designed for not only graduate students and researchers but also practitioners and policymakers.

High-Frequency Financial Econometrics

Download High-Frequency Financial Econometrics PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691161437
Total Pages : 683 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis High-Frequency Financial Econometrics by : Yacine Aït-Sahalia

Download or read book High-Frequency Financial Econometrics written by Yacine Aït-Sahalia and published by Princeton University Press. This book was released on 2014-07-21 with total page 683 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to the statistical and econometric methods for analyzing high-frequency financial data High-frequency trading is an algorithm-based computerized trading practice that allows firms to trade stocks in milliseconds. Over the last fifteen years, the use of statistical and econometric methods for analyzing high-frequency financial data has grown exponentially. This growth has been driven by the increasing availability of such data, the technological advancements that make high-frequency trading strategies possible, and the need of practitioners to analyze these data. This comprehensive book introduces readers to these emerging methods and tools of analysis. Yacine Aït-Sahalia and Jean Jacod cover the mathematical foundations of stochastic processes, describe the primary characteristics of high-frequency financial data, and present the asymptotic concepts that their analysis relies on. Aït-Sahalia and Jacod also deal with estimation of the volatility portion of the model, including methods that are robust to market microstructure noise, and address estimation and testing questions involving the jump part of the model. As they demonstrate, the practical importance and relevance of jumps in financial data are universally recognized, but only recently have econometric methods become available to rigorously analyze jump processes. Aït-Sahalia and Jacod approach high-frequency econometrics with a distinct focus on the financial side of matters while maintaining technical rigor, which makes this book invaluable to researchers and practitioners alike.

Modeling Financial Time Series with S-PLUS

Download Modeling Financial Time Series with S-PLUS PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387217630
Total Pages : 632 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Modeling Financial Time Series with S-PLUS by : Eric Zivot

Download or read book Modeling Financial Time Series with S-PLUS written by Eric Zivot and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the "2000 Outstanding Scholars of the 21st Century" by International Biographical Centre.

Statistical Models

Download Statistical Models PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139477315
Total Pages : 459 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Statistical Models by : David A. Freedman

Download or read book Statistical Models written by David A. Freedman and published by Cambridge University Press. This book was released on 2009-04-27 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lively and engaging book explains the things you have to know in order to read empirical papers in the social and health sciences, as well as the techniques you need to build statistical models of your own. The discussion in the book is organized around published studies, as are many of the exercises. Relevant journal articles are reprinted at the back of the book. Freedman makes a thorough appraisal of the statistical methods in these papers and in a variety of other examples. He illustrates the principles of modelling, and the pitfalls. The discussion shows you how to think about the critical issues - including the connection (or lack of it) between the statistical models and the real phenomena. The book is written for advanced undergraduates and beginning graduate students in statistics, as well as students and professionals in the social and health sciences.

Handbook of Computational Econometrics

Download Handbook of Computational Econometrics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470748907
Total Pages : 514 pages
Book Rating : 4.4/5 (77 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Computational Econometrics by : David A. Belsley

Download or read book Handbook of Computational Econometrics written by David A. Belsley and published by John Wiley & Sons. This book was released on 2009-08-18 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Computational Econometrics examines the state of the art of computational econometrics and provides exemplary studies dealing with computational issues arising from a wide spectrum of econometric fields including such topics as bootstrapping, the evaluation of econometric software, and algorithms for control, optimization, and estimation. Each topic is fully introduced before proceeding to a more in-depth examination of the relevant methodologies and valuable illustrations. This book: Provides self-contained treatments of issues in computational econometrics with illustrations and invaluable bibliographies. Brings together contributions from leading researchers. Develops the techniques needed to carry out computational econometrics. Features network studies, non-parametric estimation, optimization techniques, Bayesian estimation and inference, testing methods, time-series analysis, linear and nonlinear methods, VAR analysis, bootstrapping developments, signal extraction, software history and evaluation. This book will appeal to econometricians, financial statisticians, econometric researchers and students of econometrics at both graduate and advanced undergraduate levels.

Financial Signal Processing and Machine Learning

Download Financial Signal Processing and Machine Learning PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118745639
Total Pages : 312 pages
Book Rating : 4.1/5 (187 download)

DOWNLOAD NOW!


Book Synopsis Financial Signal Processing and Machine Learning by : Ali N. Akansu

Download or read book Financial Signal Processing and Machine Learning written by Ali N. Akansu and published by John Wiley & Sons. This book was released on 2016-04-21 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.

Encyclopedia of Finance

Download Encyclopedia of Finance PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030912310
Total Pages : 2746 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Encyclopedia of Finance by : Cheng-Few Lee

Download or read book Encyclopedia of Finance written by Cheng-Few Lee and published by Springer Nature. This book was released on 2022-09-12 with total page 2746 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Encyclopedia of Finance comprehensively covers the broad spectrum of terms and topics relating finance from asset pricing models to option pricing models to risk management and beyond. This third edition is comprised of over 1,300 individual definitions, chapters, appendices and is the most comprehensive and up-to-date resource in the field, integrating the most current terminology, research, theory, and practical applications. It includes 200 new terms and essays; 25 new chapters and four new appendices. Showcasing contributions from an international array of experts, the revised edition of this major reference work is unparalleled in the breadth and depth of its coverage.

Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.