Graphs on Surfaces

Download Graphs on Surfaces PDF Online Free

Author :
Publisher : Johns Hopkins University Press
ISBN 13 : 9780801866890
Total Pages : 0 pages
Book Rating : 4.8/5 (668 download)

DOWNLOAD NOW!


Book Synopsis Graphs on Surfaces by : Bojan Mohar

Download or read book Graphs on Surfaces written by Bojan Mohar and published by Johns Hopkins University Press. This book was released on 2001-08-02 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph theory is one of the fastest growing branches of mathematics. Until recently, it was regarded as a branch of combinatorics and was best known by the famous four-color theorem stating that any map can be colored using only four colors such that no two bordering countries have the same color. Now graph theory is an area of its own with many deep results and beautiful open problems. Graph theory has numerous applications in almost every field of science and has attracted new interest because of its relevance to such technological problems as computer and telephone networking and, of course, the internet. In this new book in the Johns Hopkins Studies in the Mathematical Science series, Bojan Mohar and Carsten Thomassen look at a relatively new area of graph theory: that associated with curved surfaces. Graphs on surfaces form a natural link between discrete and continuous mathematics. The book provides a rigorous and concise introduction to graphs on surfaces and surveys some of the recent developments in this area. Among the basic results discussed are Kuratowski's theorem and other planarity criteria, the Jordan Curve Theorem and some of its extensions, the classification of surfaces, and the Heffter-Edmonds-Ringel rotation principle, which makes it possible to treat graphs on surfaces in a purely combinatorial way. The genus of a graph, contractability of cycles, edge-width, and face-width are treated purely combinatorially, and several results related to these concepts are included. The extension by Robertson and Seymour of Kuratowski's theorem to higher surfaces is discussed in detail, and a shorter proof is presented. The book concludes with a survey of recent developments on coloring graphs on surfaces.

Graphs on Surfaces and Their Applications

Download Graphs on Surfaces and Their Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540383611
Total Pages : 463 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Graphs on Surfaces and Their Applications by : Sergei K. Lando

Download or read book Graphs on Surfaces and Their Applications written by Sergei K. Lando and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.

Graphs on Surfaces

Download Graphs on Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461469716
Total Pages : 149 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Graphs on Surfaces by : Joanna A. Ellis-Monaghan

Download or read book Graphs on Surfaces written by Joanna A. Ellis-Monaghan and published by Springer Science & Business Media. This book was released on 2013-06-28 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphs on Surfaces: Dualities, Polynomials, and Knots offers an accessible and comprehensive treatment of recent developments on generalized duals of graphs on surfaces, and their applications. The authors illustrate the interdependency between duality, medial graphs and knots; how this interdependency is reflected in algebraic invariants of graphs and knots; and how it can be exploited to solve problems in graph and knot theory. Taking a constructive approach, the authors emphasize how generalized duals and related ideas arise by localizing classical constructions, such as geometric duals and Tait graphs, and then removing artificial restrictions in these constructions to obtain full extensions of them to embedded graphs. The authors demonstrate the benefits of these generalizations to embedded graphs in chapters describing their applications to graph polynomials and knots. Graphs on Surfaces: Dualities, Polynomials, and Knots also provides a self-contained introduction to graphs on surfaces, generalized duals, topological graph polynomials, and knot polynomials that is accessible both to graph theorists and to knot theorists. Directed at those with some familiarity with basic graph theory and knot theory, this book is appropriate for graduate students and researchers in either area. Because the area is advancing so rapidly, the authors give a comprehensive overview of the topic and include a robust bibliography, aiming to provide the reader with the necessary foundations to stay abreast of the field. The reader will come away from the text convinced of advantages of considering these higher genus analogues of constructions of plane and abstract graphs, and with a good understanding of how they arise.

Graphs, Surfaces and Homology

Download Graphs, Surfaces and Homology PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139491172
Total Pages : 273 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Graphs, Surfaces and Homology by : Peter Giblin

Download or read book Graphs, Surfaces and Homology written by Peter Giblin and published by Cambridge University Press. This book was released on 2010-08-12 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homology theory is a powerful algebraic tool that is at the centre of current research in topology and its applications. This accessible textbook will appeal to mathematics students interested in the application of algebra to geometrical problems, specifically the study of surfaces (sphere, torus, Mobius band, Klein bottle). In this introduction to simplicial homology - the most easily digested version of homology theory - the author studies interesting geometrical problems, such as the structure of two-dimensional surfaces and the embedding of graphs in surfaces, using the minimum of algebraic machinery and including a version of Lefschetz duality. Assuming very little mathematical knowledge, the book provides a complete account of the algebra needed (abelian groups and presentations), and the development of the material is always carefully explained with proofs given in full detail. Numerous examples and exercises are also included, making this an ideal text for undergraduate courses or for self-study.

Graphs, Groups and Surfaces

Download Graphs, Groups and Surfaces PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080871194
Total Pages : 329 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Graphs, Groups and Surfaces by : A.T. White

Download or read book Graphs, Groups and Surfaces written by A.T. White and published by Elsevier. This book was released on 1985-01-01 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of topological graph theory has expanded greatly in the ten years since the first edition of this book appeared. The original nine chapters of this classic work have therefore been revised and updated. Six new chapters have been added, dealing with: voltage graphs, non-orientable imbeddings, block designs associated with graph imbeddings, hypergraph imbeddings, map automorphism groups and change ringing.Thirty-two new problems have been added to this new edition, so that there are now 181 in all; 22 of these have been designated as ``difficult'' and 9 as ``unsolved''. Three of the four unsolved problems from the first edition have been solved in the ten years between editions; they are now marked as ``difficult''.

Topics in Topological Graph Theory

Download Topics in Topological Graph Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139643681
Total Pages : 387 pages
Book Rating : 4.1/5 (396 download)

DOWNLOAD NOW!


Book Synopsis Topics in Topological Graph Theory by : Lowell W. Beineke

Download or read book Topics in Topological Graph Theory written by Lowell W. Beineke and published by Cambridge University Press. This book was released on 2009-07-09 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of topological ideas to explore various aspects of graph theory, and vice versa, is a fruitful area of research. There are links with other areas of mathematics, such as design theory and geometry, and increasingly with such areas as computer networks where symmetry is an important feature. Other books cover portions of the material here, but there are no other books with such a wide scope. This book contains fifteen expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory and the topology of surfaces. Each chapter concludes with an extensive list of references.

Modeling of Curves and Surfaces with MATLAB®

Download Modeling of Curves and Surfaces with MATLAB® PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387712771
Total Pages : 463 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Modeling of Curves and Surfaces with MATLAB® by : Vladimir Rovenski

Download or read book Modeling of Curves and Surfaces with MATLAB® written by Vladimir Rovenski and published by Springer Science & Business Media. This book was released on 2010-06-10 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text on geometry is devoted to various central geometrical topics including: graphs of functions, transformations, (non-)Euclidean geometries, curves and surfaces as well as their applications in a variety of disciplines. This book presents elementary methods for analytical modeling and demonstrates the potential for symbolic computational tools to support the development of analytical solutions. The author systematically examines several powerful tools of MATLAB® including 2D and 3D animation of geometric images with shadows and colors and transformations using matrices. With over 150 stimulating exercises and problems, this text integrates traditional differential and non-Euclidean geometries with more current computer systems in a practical and user-friendly format. This text is an excellent classroom resource or self-study reference for undergraduate students in a variety of disciplines.

Pearls in Graph Theory

Download Pearls in Graph Theory PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486315525
Total Pages : 276 pages
Book Rating : 4.4/5 (863 download)

DOWNLOAD NOW!


Book Synopsis Pearls in Graph Theory by : Nora Hartsfield

Download or read book Pearls in Graph Theory written by Nora Hartsfield and published by Courier Corporation. This book was released on 2013-04-15 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stimulating and accessible, this undergraduate-level text covers basic graph theory, colorings of graphs, circuits and cycles, labeling graphs, drawings of graphs, measurements of closeness to planarity, graphs on surfaces, and applications and algorithms. 1994 edition.

Configurations from a Graphical Viewpoint

Download Configurations from a Graphical Viewpoint PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817683631
Total Pages : 289 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Configurations from a Graphical Viewpoint by : Tomaz Pisanski

Download or read book Configurations from a Graphical Viewpoint written by Tomaz Pisanski and published by Springer Science & Business Media. This book was released on 2013 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Configurations can be studied from a graph-theoretical viewpoint via the so-called Levi graphs and lie at the heart of graphs, groups, surfaces, and geometries, all of which are very active areas of mathematical exploration. In this self-contained textbook, algebraic graph theory is used to introduce groups; topological graph theory is used to explore surfaces; and geometric graph theory is implemented to analyze incidence geometries. After a preview of configurations in Chapter 1, a concise introduction to graph theory is presented in Chapter 2, followed by a geometric introduction to groups in Chapter 3. Maps and surfaces are combinatorially treated in Chapter 4. Chapter 5 introduces the concept of incidence structure through vertex colored graphs, and the combinatorial aspects of classical configurations are studied. Geometric aspects, some historical remarks, references, and applications of classical configurations appear in the last chapter. With over two hundred illustrations, challenging exercises at the end of each chapter, a comprehensive bibliography, and a set of open problems, Configurations from a Graphical Viewpoint is well suited for a graduate graph theory course, an advanced undergraduate seminar, or a self-contained reference for mathematicians and researchers.

Introduction to Graph Theory

Download Introduction to Graph Theory PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486318664
Total Pages : 242 pages
Book Rating : 4.4/5 (863 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Graph Theory by : Richard J. Trudeau

Download or read book Introduction to Graph Theory written by Richard J. Trudeau and published by Courier Corporation. This book was released on 2013-04-15 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.

Modern Graph Theory

Download Modern Graph Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461206197
Total Pages : 408 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Modern Graph Theory by : Bela Bollobas

Download or read book Modern Graph Theory written by Bela Bollobas and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: An in-depth account of graph theory, written for serious students of mathematics and computer science. It reflects the current state of the subject and emphasises connections with other branches of pure mathematics. Recognising that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavour of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory, the book presents a detailed account of newer topics, including Szemerédis Regularity Lemma and its use, Shelahs extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. Moreover, the book contains over 600 well thought-out exercises: although some are straightforward, most are substantial, and some will stretch even the most able reader.

Topological Theory of Graphs

Download Topological Theory of Graphs PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110479222
Total Pages : 424 pages
Book Rating : 4.1/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Topological Theory of Graphs by : Yanpei Liu

Download or read book Topological Theory of Graphs written by Yanpei Liu and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-03-06 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a topological approach to combinatorial configurations, in particular graphs, by introducing a new pair of homology and cohomology via polyhedra. On this basis, a number of problems are solved using a new approach, such as the embeddability of a graph on a surface (orientable and nonorientable) with given genus, the Gauss crossing conjecture, the graphicness and cographicness of a matroid, and so forth. Notably, the specific case of embeddability on a surface of genus zero leads to a number of corollaries, including the theorems of Lefschetz (on double coverings), of MacLane (on cycle bases), and of Whitney (on duality) for planarity. Relevant problems include the Jordan axiom in polyhedral forms, efficient methods for extremality and for recognizing a variety of embeddings (including rectilinear layouts in VLSI), and pan-polynomials, including those of Jones, Kauffman (on knots), and Tutte (on graphs), among others. Contents Preliminaries Polyhedra Surfaces Homology on Polyhedra Polyhedra on the Sphere Automorphisms of a Polyhedron Gauss Crossing Sequences Cohomology on Graphs Embeddability on Surfaces Embeddings on Sphere Orthogonality on Surfaces Net Embeddings Extremality on Surfaces Matroidal Graphicness Knot Polynomials

Graph Theory and Its Applications, Second Edition

Download Graph Theory and Its Applications, Second Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 158488505X
Total Pages : 799 pages
Book Rating : 4.5/5 (848 download)

DOWNLOAD NOW!


Book Synopsis Graph Theory and Its Applications, Second Edition by : Jonathan L. Gross

Download or read book Graph Theory and Its Applications, Second Edition written by Jonathan L. Gross and published by CRC Press. This book was released on 2005-09-22 with total page 799 pages. Available in PDF, EPUB and Kindle. Book excerpt: Already an international bestseller, with the release of this greatly enhanced second edition, Graph Theory and Its Applications is now an even better choice as a textbook for a variety of courses -- a textbook that will continue to serve your students as a reference for years to come. The superior explanations, broad coverage, and abundance of illustrations and exercises that positioned this as the premier graph theory text remain, but are now augmented by a broad range of improvements. Nearly 200 pages have been added for this edition, including nine new sections and hundreds of new exercises, mostly non-routine. What else is new? New chapters on measurement and analytic graph theory Supplementary exercises in each chapter - ideal for reinforcing, reviewing, and testing. Solutions and hints, often illustrated with figures, to selected exercises - nearly 50 pages worth Reorganization and extensive revisions in more than half of the existing chapters for smoother flow of the exposition Foreshadowing - the first three chapters now preview a number of concepts, mostly via the exercises, to pique the interest of reader Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.

Map Color Theorem

Download Map Color Theorem PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642657591
Total Pages : 202 pages
Book Rating : 4.6/5 (426 download)

DOWNLOAD NOW!


Book Synopsis Map Color Theorem by : G. Ringel

Download or read book Map Color Theorem written by G. Ringel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1890 P. J. Heawood [35] published a formula which he called the Map Colour Theorem. But he forgot to prove it. Therefore the world of mathematicians called it the Heawood Conjecture. In 1968 the formula was proven and therefore again called the Map Color Theorem. (This book is written in California, thus in American English. ) Beautiful combinatorial methods were developed in order to prove the formula. The proof is divided into twelve cases. In 1966 there were three of them still unsolved. In the academic year 1967/68 J. W. T. Youngs on those three cases at Santa Cruz. Sur invited me to work with him prisingly our joint effort led to the solution of all three cases. It was a year of hard work but great pleasure. Working together was extremely profitable and enjoyable. In spite of the fact that we saw each other every day, Ted wrote a letter to me, which I present here in shortened form: Santa Cruz, March 1, 1968 Dear Gerhard: Last night while I was checking our results on Cases 2, 8 and 11, and thinking of the great pleasure we had in the afternoon with the extra ordinarily elegant new solution for Case 11, it seemed to me appropriate to pause for a few minutes and dictate a historical memorandum. We began working on Case 8 on 10 October 1967, and it was settled on Tuesday night, 14 November 1967.

The Fascinating World of Graph Theory

Download The Fascinating World of Graph Theory PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691175632
Total Pages : 338 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis The Fascinating World of Graph Theory by : Arthur Benjamin

Download or read book The Fascinating World of Graph Theory written by Arthur Benjamin and published by Princeton University Press. This book was released on 2017-06-06 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: The history, formulas, and most famous puzzles of graph theory Graph theory goes back several centuries and revolves around the study of graphs—mathematical structures showing relations between objects. With applications in biology, computer science, transportation science, and other areas, graph theory encompasses some of the most beautiful formulas in mathematics—and some of its most famous problems. The Fascinating World of Graph Theory explores the questions and puzzles that have been studied, and often solved, through graph theory. This book looks at graph theory's development and the vibrant individuals responsible for the field's growth. Introducing fundamental concepts, the authors explore a diverse plethora of classic problems such as the Lights Out Puzzle, and each chapter contains math exercises for readers to savor. An eye-opening journey into the world of graphs, The Fascinating World of Graph Theory offers exciting problem-solving possibilities for mathematics and beyond.

Graphs, Colourings and the Four-Colour Theorem

Download Graphs, Colourings and the Four-Colour Theorem PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 019158360X
Total Pages : 153 pages
Book Rating : 4.1/5 (915 download)

DOWNLOAD NOW!


Book Synopsis Graphs, Colourings and the Four-Colour Theorem by : Robert A. Wilson

Download or read book Graphs, Colourings and the Four-Colour Theorem written by Robert A. Wilson and published by OUP Oxford. This book was released on 2002-01-24 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: The four-colour theorem is one of the famous problems of mathematics, that frustrated generations of mathematicians from its birth in 1852 to its solution (using substantial assistance from electronic computers) in 1976. The theorem asks whether four colours are sufficient to colour all conceivable maps, in such a way that countries with a common border are coloured with different colours. The book discusses various attempts to solve this problem, and some of the mathematics which developed out of these attempts. Much of this mathematics has developed a life of its own, and forms a fascinating part of the subject now known as graph theory. The book is designed to be self-contained, and develops all the graph-theoretical tools needed as it goes along. It includes all the elementary graph theory that should be included in an introduction to the subject, before concentrating on specific topics relevant to the four-colour problem. Part I covers basic graph theory, Euler's polyhedral formula, and the first published false `proof' of the four-colour theorem. Part II ranges widely through related topics, including map-colouring on surfaces with holes, the famous theorems of Kuratowski, Vizing, and Brooks, the conjectures of Hadwiger and Hajos, and much more besides. In Part III we return to the four-colour theorem, and study in detail the methods which finally cracked the problem.

Topology of Surfaces

Download Topology of Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387941028
Total Pages : 304 pages
Book Rating : 4.9/5 (41 download)

DOWNLOAD NOW!


Book Synopsis Topology of Surfaces by : L.Christine Kinsey

Download or read book Topology of Surfaces written by L.Christine Kinsey and published by Springer Science & Business Media. This book was released on 1997-09-26 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: " . . . that famous pedagogical method whereby one begins with the general and proceeds to the particular only after the student is too confused to understand even that anymore. " Michael Spivak This text was written as an antidote to topology courses such as Spivak It is meant to provide the student with an experience in geomet describes. ric topology. Traditionally, the only topology an undergraduate might see is point-set topology at a fairly abstract level. The next course the average stu dent would take would be a graduate course in algebraic topology, and such courses are commonly very homological in nature, providing quick access to current research, but not developing any intuition or geometric sense. I have tried in this text to provide the undergraduate with a pragmatic introduction to the field, including a sampling from point-set, geometric, and algebraic topology, and trying not to include anything that the student cannot immediately experience. The exercises are to be considered as an in tegral part of the text and, ideally, should be addressed when they are met, rather than at the end of a block of material. Many of them are quite easy and are intended to give the student practice working with the definitions and digesting the current topic before proceeding. The appendix provides a brief survey of the group theory needed.