Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Good Data
Download Good Data full books in PDF, epub, and Kindle. Read online Good Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Download or read book Good Data written by Angela Daly and published by Lulu.com. This book was released on 2019-01-23 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Moving away from the strong body of critique of pervasive ?bad data? practices by both governments and private actors in the globalized digital economy, this book aims to paint an alternative, more optimistic but still pragmatic picture of the datafied future. The authors examine and propose ?good data? practices, values and principles from an interdisciplinary, international perspective. From ideas of data sovereignty and justice, to manifestos for change and calls for activism, this collection opens a multifaceted conversation on the kinds of futures we want to see, and presents concrete steps on how we can start realizing good data in practice.
Download or read book Good Data written by Sam Gilbert and published by . This book was released on 2022-02-17 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rethink of everything you thought you knew about data, privacy and the future of Big Tech. Good Data examines the incredible new ways this information explosion is already helping us, and explains why the best is yet to come.
Book Synopsis Storytelling with Data by : Cole Nussbaumer Knaflic
Download or read book Storytelling with Data written by Cole Nussbaumer Knaflic and published by John Wiley & Sons. This book was released on 2015-10-09 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it!
Book Synopsis Creating Good Data by : Harry Foxwell
Download or read book Creating Good Data written by Harry Foxwell and published by Apress. This book was released on 2020-10-28 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Create good data from the start, rather than fixing it after it is collected. By following the guidelines in this book, you will be able to conduct more effective analyses and produce timely presentations of research data. Data analysts are often presented with datasets for exploration and study that are poorly designed, leading to difficulties in interpretation and to delays in producing meaningful results. Much data analytics training focuses on how to clean and transform datasets before serious analyses can even be started. Inappropriate or confusing representations, unit of measurement choices, coding errors, missing values, outliers, etc., can be avoided by using good dataset design and by understanding how data types determine the kinds of analyses which can be performed. This book discusses the principles and best practices of dataset creation, and covers basic data types and their related appropriate statistics and visualizations. A key focus of the book is why certain data types are chosen for representing concepts and measurements, in contrast to the typical discussions of how to analyze a specific data type once it has been selected. What You Will Learn Be aware of the principles of creating and collecting data Know the basic data types and representations Select data types, anticipating analysis goals Understand dataset structures and practices for analyzing and sharing Be guided by examples and use cases (good and bad) Use cleaning tools and methods to create good data Who This Book Is For Researchers who design studies and collect data and subsequently conduct and report the results of their analyses can use the best practices in this book to produce better descriptions and interpretations of their work. In addition, data analysts who explore and explain data of other researchers will be able to create better datasets.
Book Synopsis Privacy, Big Data, and the Public Good by : Julia Lane
Download or read book Privacy, Big Data, and the Public Good written by Julia Lane and published by Cambridge University Press. This book was released on 2014-06-09 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Massive amounts of data on human beings can now be analyzed. Pragmatic purposes abound, including selling goods and services, winning political campaigns, and identifying possible terrorists. Yet 'big data' can also be harnessed to serve the public good: scientists can use big data to do research that improves the lives of human beings, improves government services, and reduces taxpayer costs. In order to achieve this goal, researchers must have access to this data - raising important privacy questions. What are the ethical and legal requirements? What are the rules of engagement? What are the best ways to provide access while also protecting confidentiality? Are there reasonable mechanisms to compensate citizens for privacy loss? The goal of this book is to answer some of these questions. The book's authors paint an intellectual landscape that includes legal, economic, and statistical frameworks. The authors also identify new practical approaches that simultaneously maximize the utility of data access while minimizing information risk.
Book Synopsis Learning from Good and Bad Data by : Philip D. Laird
Download or read book Learning from Good and Bad Data written by Philip D. Laird and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is a contribution to the study of the identification problem: the problem of identifying an item from a known class us ing positive and negative examples. This problem is considered to be an important component of the process of inductive learning, and as such has been studied extensively. In the overview we shall explain the objectives of this work and its place in the overall fabric of learning research. Context. Learning occurs in many forms; the only form we are treat ing here is inductive learning, roughly characterized as the process of forming general concepts from specific examples. Computer Science has found three basic approaches to this problem: • Select a specific learning task, possibly part of a larger task, and construct a computer program to solve that task . • Study cognitive models of learning in humans and extrapolate from them general principles to explain learning behavior. Then construct machine programs to test and illustrate these models. xi Xll PREFACE • Formulate a mathematical theory to capture key features of the induction process. This work belongs to the third category. The various studies of learning utilize training examples (data) in different ways. The three principal ones are: • Similarity-based (or empirical) learning, in which a collection of examples is used to select an explanation from a class of possible rules.
Book Synopsis Good Data in Business and Professional Discourse Research and Teaching by : Geert Jacobs
Download or read book Good Data in Business and Professional Discourse Research and Teaching written by Geert Jacobs and published by Springer Nature. This book was released on 2021-01-27 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book engages with the richly interdisciplinary field of business and professional communication, aiming to reconcile the prescriptive ambitions of the US-centred business communication tradition with the more descriptive approach favoured in discourse studies and applied linguistics. A follow-up to the award-winning book The Ins and Outs of Business and Professional Discourse Research (Palgrave Macmillan, 2016), this volume brings together scholars and their recent work from wide-ranging business and professional settings to engage with the question of what counts as good data. The authors focus on four key themes - authenticity, triangulation, background and relevance - to shine a light on business and professional discourse as essential contextual and intertextual. This book will be of interest to scholars working in applied linguistics, sociolinguistics, and business communication, but also other social scientists interested in a range of perspectives on oral, written and digital language use in workplace settings.
Book Synopsis Democratizing Our Data by : Julia Lane
Download or read book Democratizing Our Data written by Julia Lane and published by MIT Press. This book was released on 2021-10-19 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: A wake-up call for America to create a new framework for democratizing data. Public data are foundational to our democratic system. People need consistently high-quality information from trustworthy sources. In the new economy, wealth is generated by access to data; government's job is to democratize the data playing field. Yet data produced by the American government are getting worse and costing more. In Democratizing Our Data, Julia Lane argues that good data are essential for democracy. Her book is a wake-up call to America to fix its broken public data system.
Download or read book Good Charts written by Scott Berinato and published by Harvard Business Review Press. This book was released on 2016-04-26 with total page 842 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dataviz—the new language of business A good visualization can communicate the nature and potential impact of information and ideas more powerfully than any other form of communication. For a long time “dataviz” was left to specialists—data scientists and professional designers. No longer. A new generation of tools and massive amounts of available data make it easy for anyone to create visualizations that communicate ideas far more effectively than generic spreadsheet charts ever could. What’s more, building good charts is quickly becoming a need-to-have skill for managers. If you’re not doing it, other managers are, and they’re getting noticed for it and getting credit for contributing to your company’s success. In Good Charts, dataviz maven Scott Berinato provides an essential guide to how visualization works and how to use this new language to impress and persuade. Dataviz today is where spreadsheets and word processors were in the early 1980s—on the cusp of changing how we work. Berinato lays out a system for thinking visually and building better charts through a process of talking, sketching, and prototyping. This book is much more than a set of static rules for making visualizations. It taps into both well-established and cutting-edge research in visual perception and neuroscience, as well as the emerging field of visualization science, to explore why good charts (and bad ones) create “feelings behind our eyes.” Along the way, Berinato also includes many engaging vignettes of dataviz pros, illustrating the ideas in practice. Good Charts will help you turn plain, uninspiring charts that merely present information into smart, effective visualizations that powerfully convey ideas.
Book Synopsis Behind Every Good Decision by : Piyanka Jain
Download or read book Behind Every Good Decision written by Piyanka Jain and published by AMACOM. This book was released on 2014-11-05 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a misconception in business that the only data that matters is BIG data, and that elaborate tools and data scientists are required to extract any practical information. However, nothing could be further from the truth. If you feel that you can’t understand how to read, let alone implement, these complex software programs that crunch the data and spit out more data, that will no longer be a problem! Authors and analytics experts Piyanka Jain and Puneet Sharma demystify the process of business analytics and demonstrate how professionals at any level can take the information at their disposal and in only five simple steps--using only Excel as a tool--make the decision necessary to increase revenue, decrease costs, improve product, or whatever else is being asked of them at that time. In Behind Every Good Decision, you will learn how to: Clarify the business question Lay out a hypothesis-driven plan Pull relevant data Convert it to insights Make decisions that make an impact Packed with examples and exercises, this refreshingly accessible book explains the four fundamental analytic techniques that can help solve a surprising 80 percent of all business problems. It doesn’t take a numbers person to know that is a formula you need!
Book Synopsis A Practical Guide to Analytics for Governments by : Marie Lowman
Download or read book A Practical Guide to Analytics for Governments written by Marie Lowman and published by John Wiley & Sons. This book was released on 2017-06-06 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytics can make government work better—this book shows you how A Practical Guide to Analytics for Governments provides demonstrations of real-world analytics applications for legislators, policy-makers, and support staff at the federal, state, and local levels. Big data and analytics are transforming industries across the board, and government can reap many of those same benefits by applying analytics to processes and programs already in place. From healthcare delivery and child well-being, to crime and program fraud, analytics can—in fact, already does—transform the way government works. This book shows you how analytics can be implemented in your own milieu: What is the downstream impact of new legislation? How can we make programs more efficient? Is it possible to predict policy outcomes without analytics? How do I get started building analytics into my government organization? The answers are all here, with accessible explanations and useful advice from an expert in the field. Analytics allows you to mine your data to create a holistic picture of your constituents; this model helps you tailor programs, fine-tune legislation, and serve the populace more effectively. This book walks you through analytics as applied to government, and shows you how to reap Big data's benefits at whatever level necessary. Learn how analytics is already transforming government service delivery Delve into the digital healthcare revolution Use analytics to improve education, juvenile justice, and other child-focused areas Apply analytics to transportation, criminal justice, fraud, and much more Legislators and policy makers have plenty of great ideas—but how do they put those ideas into play? Analytics can play a crucial role in getting the job done well. A Practical Guide to Analytics for Governments provides advice, perspective, and real-world guidance for public servants everywhere.
Book Synopsis Data Science for Social Good by : Massimo Lapucci
Download or read book Data Science for Social Good written by Massimo Lapucci and published by Springer Nature. This book was released on 2021-10-13 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of reflections by thought leaders at first-mover organizations in the exploding field of "Data Science for Social Good", meant as the application of knowledge from computer science, complex systems and computational social science to challenges such as humanitarian response, public health, sustainable development. The book provides both an overview of scientific approaches to social impact – identifying a social need, targeting an intervention, measuring impact – and the complementary perspective of funders and philanthropies that are pushing forward this new sector. This book will appeal to students and researchers in the rapidly growing field of data science for social impact, to data scientists at companies whose data could be used to generate more public value, and to decision makers at nonprofits, foundations, and agencies that are designing their own agenda around data.
Book Synopsis Data Feminism by : Catherine D'Ignazio
Download or read book Data Feminism written by Catherine D'Ignazio and published by MIT Press. This book was released on 2020-03-31 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought. Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.” Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.
Book Synopsis R for Data Science by : Hadley Wickham
Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Book Synopsis Good Informatics Practices (GIP) Module: Data Management by : Robert Barr
Download or read book Good Informatics Practices (GIP) Module: Data Management written by Robert Barr and published by HIMSS. This book was released on with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Markets for Good Selected Readings: Making Sense of Data and Information in the Social Sector by : Markets for Good
Download or read book Markets for Good Selected Readings: Making Sense of Data and Information in the Social Sector written by Markets for Good and published by eBookIt.com. This book was released on 2014-02-13 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markets for Good is an effort by the Bill & Melinda Gates Foundation, the William & Flora Hewlett Foundation, and the progressive financial firm Liquidnet to improve the system for generating, sharing, and acting upon data and information in the social sector. Our vision is of a social sector powered by information, where interventions are more effective and innovative, where capital flows efficiently to the organizations that are having the greatest impact, and where there is a dynamic culture of continuous learning and development. Over the past several years, Markets for Good has been a forum for discussion and collaboration among online giving platforms, nonprofit information providers, nonprofit evaluators, philanthropic advisors, and other entities working to improve the global philanthropic system and social sector. This effort has included over 50 people from more than 20 organizations. The website, MarketsforGood.org, and the work that we hope follows from it, is an outgrowth of what we have learned and observed through this collaboration. This retrospective collection of selected readings from our site includes an introduction by Jeff Raikes, CEO of the Bill & Melinda Gates Foundation, in which he highlights the "continuing wave of efforts that will push our sector to achieve even greater impact." Following Jeff's introduction, the Markets for Good Collaboration Team recaps the first 15 months of the campaign, and how they expect Markets for Good to evolve going forward. The subsequent 17 posts and authors' updates provide a range of perspectives on the most critical data-related challenges facing the social sector, and how these challenges can be addressed. Posts were chosen for their high readership, topic diversity, and thought leadership. The authors debate new and recurring hurdles in the social sector, like capacity and capital constraints; how qualitative data, including stories and beneficiary insights, can be incorporated into data-driven decision processes; and big-, medium-, and small-data management.
Book Synopsis Better Data Visualizations by : Jonathan Schwabish
Download or read book Better Data Visualizations written by Jonathan Schwabish and published by Columbia University Press. This book was released on 2021-02-09 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now more than ever, content must be visual if it is to travel far. Readers everywhere are overwhelmed with a flow of data, news, and text. Visuals can cut through the noise and make it easier for readers to recognize and recall information. Yet many researchers were never taught how to present their work visually. This book details essential strategies to create more effective data visualizations. Jonathan Schwabish walks readers through the steps of creating better graphs and how to move beyond simple line, bar, and pie charts. Through more than five hundred examples, he demonstrates the do’s and don’ts of data visualization, the principles of visual perception, and how to make subjective style decisions around a chart’s design. Schwabish surveys more than eighty visualization types, from histograms to horizon charts, ridgeline plots to choropleth maps, and explains how each has its place in the visual toolkit. It might seem intimidating, but everyone can learn how to create compelling, effective data visualizations. This book will guide you as you define your audience and goals, choose the graph that best fits for your data, and clearly communicate your message.