Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Geometry In Advanced Pure Mathematics
Download Geometry In Advanced Pure Mathematics full books in PDF, epub, and Kindle. Read online Geometry In Advanced Pure Mathematics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Pure Mathematics for Advanced Level by : B. D. Bunday
Download or read book Pure Mathematics for Advanced Level written by B. D. Bunday and published by Butterworth-Heinemann. This book was released on 2014-05-20 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pure Mathematics for Advanced Level, Second Edition is written to meet the needs of the student studying for the General Certificate of Education at Advanced Level. The text is organized into 22 chapters. Chapters 1-5 cover topics in algebra such as operations with real numbers, the binomial theorem, and the quadratic function and the quadratic equation. The principles, methods and techniques in calculus, trigonometry, and co-ordinate geometry are provided as well. Two new chapters have been added: Numerical Methods and Vectors. Mathematics students will find this book extremely useful.
Book Synopsis Geometry In Advanced Pure Mathematics by : Shaun Bullett
Download or read book Geometry In Advanced Pure Mathematics written by Shaun Bullett and published by World Scientific. This book was released on 2017-03-07 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book leads readers from a basic foundation to an advanced level understanding of geometry in advanced pure mathematics. Chapter by chapter, readers will be led from a foundation level understanding to advanced level understanding. This is the perfect text for graduate or PhD mathematical-science students looking for support in algebraic geometry, geometric group theory, modular group, holomorphic dynamics and hyperbolic geometry, syzygies and minimal resolutions, and minimal surfaces.Geometry in Advanced Pure Mathematics is the fourth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.
Book Synopsis Advanced Level Pure Mathematics by : Clement John Tranter
Download or read book Advanced Level Pure Mathematics written by Clement John Tranter and published by . This book was released on 1975 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Studies in Pure Mathematics by : ERDÖS
Download or read book Studies in Pure Mathematics written by ERDÖS and published by Birkhäuser. This book was released on 2013-12-01 with total page 741 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, written by his friends, collaborators and students, is offered to the memory of Paul Tunin. Most of the papers they contributed discuss subjects related to his own fields of research. The wide range of topics reflects the versatility of his mathematical activity. His work has inspired many mathematicians in analytic number theory, theory of functions of a complex variable, interpolation and approximation theory, numerical algebra, differential equations, statistical group theory and theory of graphs. Beyond the influence of his deep and important results he had the exceptional ability to communicate to others his enthusiasm for mathematics. One of the strengths of Turan was to ask unusual questions that became starting points of many further results, sometimes opening up new fields of research. We hope that this volume will illustrate this aspect of his work adequately. Born in Budapest, on August 28, 1910, Paul Turan obtained his Ph. D. under L. Fejer in 1935. His love for mathematies enabled him to work even under inhuman circumstances during the darkest years of the Second World War. One of his major achievements, his power sum method originated in this period. After the war he was visiting professor in Denmark and in Princeton. In 1949 he became professor at the Eotvos Lorand University of Budapest, a member of the Hungarian Academy of Sciences and a leading figure of the Hungarian mathematical community.
Book Synopsis Algebraic Geometry, Arcata 1974 by : Robin Hartshorne
Download or read book Algebraic Geometry, Arcata 1974 written by Robin Hartshorne and published by American Mathematical Soc.. This book was released on 1975-12-31 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Differential Geometry: The Interface between Pure and Applied Mathematics by : Mladen Luksic
Download or read book Differential Geometry: The Interface between Pure and Applied Mathematics written by Mladen Luksic and published by American Mathematical Soc.. This book was released on 1987 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains papers that represent the proceedings of a conference entitled 'Differential Geometry: The Interface Between Pure and Applied Mathematics', which was held in San Antonio, Texas, in April 1986. This work covers a range of applications and techniques in such areas as ordinary differential equations, Lie groups, algebra and control theory.
Book Synopsis Advanced Calculus by : James J. Callahan
Download or read book Advanced Calculus written by James J. Callahan and published by Springer Science & Business Media. This book was released on 2010-09-09 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincaré lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study.
Book Synopsis Advanced Calculus (Revised Edition) by : Lynn Harold Loomis
Download or read book Advanced Calculus (Revised Edition) written by Lynn Harold Loomis and published by World Scientific Publishing Company. This book was released on 2014-02-26 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Book Synopsis Outline Course of Pure Mathematics by : A. F. Horadam
Download or read book Outline Course of Pure Mathematics written by A. F. Horadam and published by Elsevier. This book was released on 2014-05-16 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Outline Course of Pure Mathematics presents a unified treatment of the algebra, geometry, and calculus that are considered fundamental for the foundation of undergraduate mathematics. This book discusses several topics, including elementary treatments of the real number system, simple harmonic motion, Hooke's law, parabolic motion under gravity, sequences and series, polynomials, binomial theorem, and theory of probability. Organized into 23 chapters, this book begins with an overview of the fundamental concepts of differential and integral calculus, which are complementary processes for solving problems of the physical world. This text then explains the concept of the inverse of a function that is a natural complement of the function concept and introduces a convenient notation. Other chapters illustrate the concepts of continuity and discontinuity at the origin. This book discusses as well the significance of logarithm and exponential functions in scientific and technological contexts. This book is a valuable resource for undergraduates and advanced secondary school students.
Book Synopsis Geometric Measure Theory and the Calculus of Variations by : William K. Allard
Download or read book Geometric Measure Theory and the Calculus of Variations written by William K. Allard and published by American Mathematical Soc.. This book was released on 1986 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes twenty-six papers that survey a cross section of work in modern geometric measure theory and its applications in the calculus of variations. This title provides an access to the material, including introductions and summaries of many of the authors' much longer works and a section containing 80 open problems in the field.
Book Synopsis Advanced Problems in Mathematics by : Stephen Siklos
Download or read book Advanced Problems in Mathematics written by Stephen Siklos and published by . This book was released on 2019-10-16 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new and expanded edition is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge Colleges for conditional offers in mathematics. They are also used by some other UK universities and many mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics bridges the gap between school and university mathematics, and prepares students for an undergraduate mathematics course. The questions analysed in this book are all based on past STEP questions and each question is followed by a comment and a full solution. The comments direct the reader's attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anyone interested in advanced mathematics.
Book Synopsis Advanced Euclidean Geometry by : Roger A. Johnson
Download or read book Advanced Euclidean Geometry written by Roger A. Johnson and published by Courier Corporation. This book was released on 2013-01-08 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. 1929 edition.
Book Synopsis Analysis, Geometry, and Modeling in Finance by : Pierre Henry-Labordere
Download or read book Analysis, Geometry, and Modeling in Finance written by Pierre Henry-Labordere and published by CRC Press. This book was released on 2008-09-22 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing is the first book that applies advanced analytical and geometrical methods used in physics and mathematics to the financial field. It even obtains new results when only approximate and partial solutions were previously available.Through the problem of option pricing, th
Book Synopsis Principles of Algebraic Geometry by : Phillip Griffiths
Download or read book Principles of Algebraic Geometry written by Phillip Griffiths and published by John Wiley & Sons. This book was released on 2014-08-21 with total page 837 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special topics in complex manifolds.
Book Synopsis Geometry and Its Applications by : Walter A. Meyer
Download or read book Geometry and Its Applications written by Walter A. Meyer and published by Elsevier. This book was released on 2006-02-21 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meyer's Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry's usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers. - Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns - Physics - Robotics - Computer vision - Computer graphics - Stability of architectural structures - Molecular biology - Medicine - Pattern recognition - Historical notes included in many chapters
Book Synopsis Geometry for College Students by : I. Martin Isaacs
Download or read book Geometry for College Students written by I. Martin Isaacs and published by American Mathematical Soc.. This book was released on 2009 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the challenges many mathematics students face occurs after they complete their study of basic calculus and linear algebra, and they start taking courses where they are expected to write proofs. Historically, students have been learning to think mathematically and to write proofs by studying Euclidean geometry. In the author's opinion, geometry is still the best way to make the transition from elementary to advanced mathematics. The book begins with a thorough review of high school geometry, then goes on to discuss special points associated with triangles, circles and certain associated lines, Ceva's theorem, vector techniques of proof, and compass-and-straightedge constructions. There is also some emphasis on proving numerical formulas like the laws of sines, cosines, and tangents, Stewart's theorem, Ptolemy's theorem, and the area formula of Heron. An important difference of this book from the majority of modern college geometry texts is that it avoids axiomatics. The students using this book have had very little experience with formal mathematics. Instead, the focus of the course and the book is on interesting theorems and on the techniques that can be used to prove them. This makes the book suitable to second- or third-year mathematics majors and also to secondary mathematics education majors, allowing the students to learn how to write proofs of mathematical results and, at the end, showing them what mathematics is really all about.
Book Synopsis Algebra & Geometry by : Mark V. Lawson
Download or read book Algebra & Geometry written by Mark V. Lawson and published by CRC Press. This book was released on 2016-11-25 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebra & Geometry: An Introduction to University Mathematics provides a bridge between high school and undergraduate mathematics courses on algebra and geometry. The author shows students how mathematics is more than a collection of methods by presenting important ideas and their historical origins throughout the text. He incorporates a hands-on approach to proofs and connects algebra and geometry to various applications. The text focuses on linear equations, polynomial equations, and quadratic forms. The first several chapters cover foundational topics, including the importance of proofs and properties commonly encountered when studying algebra. The remaining chapters form the mathematical core of the book. These chapters explain the solution of different kinds of algebraic equations, the nature of the solutions, and the interplay between geometry and algebra