Geometric Quantization and Quantum Mechanics

Download Geometric Quantization and Quantum Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461260663
Total Pages : 241 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Geometric Quantization and Quantum Mechanics by : Jedrzej Sniatycki

Download or read book Geometric Quantization and Quantum Mechanics written by Jedrzej Sniatycki and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a revised and expanded version of the lecture notes of two seminar series given during the academic year 1976/77 at the Department of Mathematics and Statistics of the University of Calgary, and in the summer of 1978 at the Institute of Theoretical Physics of the Technical University Clausthal. The aim of the seminars was to present geometric quantization from the point of view· of its applica tions to quantum mechanics, and to introduce the quantum dynamics of various physical systems as the result of the geometric quantization of the classical dynamics of these systems. The group representation aspects of geometric quantiza tion as well as proofs of the existence and the uniqueness of the introduced structures can be found in the expository papers of Blattner, Kostant, Sternberg and Wolf, and also in the references quoted in these papers. The books of Souriau (1970) and Simms and Woodhouse (1976) present the theory of geometric quantization and its relationship to quantum mech anics. The purpose of the present book is to complement the preceding ones by including new developments of the theory and emphasizing the computations leading to results in quantum mechanics.

Lectures on the Geometry of Quantization

Download Lectures on the Geometry of Quantization PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821807989
Total Pages : 150 pages
Book Rating : 4.8/5 (79 download)

DOWNLOAD NOW!


Book Synopsis Lectures on the Geometry of Quantization by : Sean Bates

Download or read book Lectures on the Geometry of Quantization written by Sean Bates and published by American Mathematical Soc.. This book was released on 1997 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on a course entitled ``Symplectic Geometry and Geometric Quantization'' taught by Alan Weinstein at the University of California, Berkeley (fall 1992) and at the Centre Emile Borel (spring 1994). The only prerequisite for the course needed is a knowledge of the basic notions from the theory of differentiable manifolds (differential forms, vector fields, transversality, etc.). The aim is to give students an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and quantum mechanics (unitary flows on Hilbert spaces). These notes are meant to function as a guide to the literature. The authors refer to other sources for many details that are omitted and can be bypassed on a first reading.

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics

Download Quantization, Geometry and Noncommutative Structures in Mathematics and Physics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319654276
Total Pages : 347 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Quantization, Geometry and Noncommutative Structures in Mathematics and Physics by : Alexander Cardona

Download or read book Quantization, Geometry and Noncommutative Structures in Mathematics and Physics written by Alexander Cardona and published by Springer. This book was released on 2017-10-26 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.

Geometric Quantization in Action

Download Geometric Quantization in Action PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9789027714268
Total Pages : 362 pages
Book Rating : 4.7/5 (142 download)

DOWNLOAD NOW!


Book Synopsis Geometric Quantization in Action by : N.E. Hurt

Download or read book Geometric Quantization in Action written by N.E. Hurt and published by Springer Science & Business Media. This book was released on 1982-12-31 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then, is that they can't see the problem. one day, perhaps you will fmd the final question. G. K. Chesterton, The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geo metry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical progmmming profit from homotopy theory; Lie algebras are relevant to fIltering; and prediction and electrical engineering can use Stein spaces.

Loop Spaces, Characteristic Classes and Geometric Quantization

Download Loop Spaces, Characteristic Classes and Geometric Quantization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817647317
Total Pages : 318 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Loop Spaces, Characteristic Classes and Geometric Quantization by : Jean-Luc Brylinski

Download or read book Loop Spaces, Characteristic Classes and Geometric Quantization written by Jean-Luc Brylinski and published by Springer Science & Business Media. This book was released on 2009-12-30 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the differential geometry of manifolds, loop spaces, line bundles and groupoids, and the relations of this geometry to mathematical physics. Applications presented in the book involve anomaly line bundles on loop spaces and anomaly functionals, central extensions of loop groups, Kähler geometry of the space of knots, and Cheeger--Chern--Simons secondary characteristics classes. It also covers the Dirac monopole and Dirac’s quantization of the electrical charge.

Hamiltonian Mechanical Systems and Geometric Quantization

Download Hamiltonian Mechanical Systems and Geometric Quantization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401119929
Total Pages : 289 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Hamiltonian Mechanical Systems and Geometric Quantization by : Mircea Puta

Download or read book Hamiltonian Mechanical Systems and Geometric Quantization written by Mircea Puta and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents various aspects of the geometry of symplectic and Poisson manifolds, and applications in Hamiltonian mechanics and geometric quantization are indicated. Chapter 1 presents some general facts about symplectic vector space, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study of Hamiltonian mechanics. Chapter 3 considers some standard facts concerning Lie groups and algebras which lead to the theory of momentum mappings and the Marsden--Weinstein reduction. Chapters 4 and 5 consider the theory and the stability of equilibrium solutions of Hamilton--Poisson mechanical systems. Chapters 6 and 7 are devoted to the theory of geometric quantization. This leads, in Chapter 8, to topics such as foliated cohomology, the theory of the Dolbeault--Kostant complex, and their applications. A discussion of the relation between geometric quantization and the Marsden--Weinstein reduction is presented in Chapter 9. The final chapter considers extending the theory of geometric quantization to Poisson manifolds, via the theory of symplectic groupoids. Each chapter concludes with problems and solutions, many of which present significant applications and, in some cases, major theorems. For graduate students and researchers whose interests and work involve symplectic geometry and Hamiltonian mechanics.

Integrability, Quantization, and Geometry: I. Integrable Systems

Download Integrability, Quantization, and Geometry: I. Integrable Systems PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470455919
Total Pages : 516 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Integrability, Quantization, and Geometry: I. Integrable Systems by : Sergey Novikov

Download or read book Integrability, Quantization, and Geometry: I. Integrable Systems written by Sergey Novikov and published by American Mathematical Soc.. This book was released on 2021-04-12 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.

The Geometry of Heisenberg Groups

Download The Geometry of Heisenberg Groups PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821844954
Total Pages : 321 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Heisenberg Groups by : Ernst Binz

Download or read book The Geometry of Heisenberg Groups written by Ernst Binz and published by American Mathematical Soc.. This book was released on 2008 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The three-dimensional Heisenberg group, being a quite simple non-commutative Lie group, appears prominently in various applications of mathematics. The goal of this book is to present basic geometric and algebraic properties of the Heisenberg group and its relation to other important mathematical structures (the skew field of quaternions, symplectic structures, and representations) and to describe some of its applications. In particular, the authors address such subjects as signal analysis and processing, geometric optics, and quantization. In each case, the authors present necessary details of the applied topic being considered." "This book manages to encompass a large variety of topics being easily accessible in its fundamentals. It can be useful to students and researchers working in mathematics and in applied mathematics."--BOOK JACKET.

Symplectic Geometry and Quantum Mechanics

Download Symplectic Geometry and Quantum Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764375752
Total Pages : 375 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Symplectic Geometry and Quantum Mechanics by : Maurice A. de Gosson

Download or read book Symplectic Geometry and Quantum Mechanics written by Maurice A. de Gosson and published by Springer Science & Business Media. This book was released on 2006-08-06 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a complete discussion of techniques and topics intervening in the mathematical treatment of quantum and semi-classical mechanics. It starts with a very readable introduction to symplectic geometry. Many topics are also of genuine interest for pure mathematicians working in geometry and topology.

Poisson Geometry, Deformation Quantisation and Group Representations

Download Poisson Geometry, Deformation Quantisation and Group Representations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521615051
Total Pages : 380 pages
Book Rating : 4.6/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Poisson Geometry, Deformation Quantisation and Group Representations by : Simone Gutt

Download or read book Poisson Geometry, Deformation Quantisation and Group Representations written by Simone Gutt and published by Cambridge University Press. This book was released on 2005-06-21 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to Poisson geometry suitable for graduate students.

Geometric Quantization

Download Geometric Quantization PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 9780198502708
Total Pages : 324 pages
Book Rating : 4.5/5 (27 download)

DOWNLOAD NOW!


Book Synopsis Geometric Quantization by : Nicholas Michael John Woodhouse

Download or read book Geometric Quantization written by Nicholas Michael John Woodhouse and published by Oxford University Press. This book was released on 1992 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: The geometric approach to quantization was introduced by Konstant and Souriau more than 20 years ago. It has given valuable and lasting insights into the relationship between classical and quantum systems, and continues to be a popular research topic. The ideas have proved useful in pure mathematics, notably in representation theory, as well as in theoretical physics. The most recent applications have been in conformal field theory and in the Jones-Witten theory of knots. The successful original edition of this book was published in 1980. Now it has been completely revised and extensively rewritten. The presentation has been simplified and many new examples have been added. The material on field theory has been expanded.

Nonlinear Poisson Brackets

Download Nonlinear Poisson Brackets PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821887963
Total Pages : 382 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Poisson Brackets by : Mihail Vladimirovi_ Karasev

Download or read book Nonlinear Poisson Brackets written by Mihail Vladimirovi_ Karasev and published by American Mathematical Soc.. This book was released on 2012-06-06 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with two old mathematical problems. The first is the problem of constructing an analog of a Lie group for general nonlinear Poisson brackets. The second is the quantization problem for such brackets in the semiclassical approximation (which is the problem of exact quantization for the simplest classes of brackets). These problems are progressively coming to the fore in the modern theory of differential equations and quantum theory, since the approach based on constructions of algebras and Lie groups seems, in a certain sense, to be exhausted. The authors' main goal is to describe in detail the new objects that appear in the solution of these problems. Many ideas of algebra, modern differential geometry, algebraic topology, and operator theory are synthesized here. The authors prove all statements in detail, thus making the book accessible to graduate students.

Operators, Geometry and Quanta

Download Operators, Geometry and Quanta PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400702051
Total Pages : 294 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Operators, Geometry and Quanta by : Dmitri Fursaev

Download or read book Operators, Geometry and Quanta written by Dmitri Fursaev and published by Springer Science & Business Media. This book was released on 2011-06-25 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a detailed and self-contained introduction into the theory of spectral functions, with an emphasis on their applications to quantum field theory. All methods are illustrated with applications to specific physical problems from the forefront of current research, such as finite-temperature field theory, D-branes, quantum solitons and noncommutativity. In the first part of the book, necessary background information on differential geometry and quantization, including less standard material, is collected. The second part of the book contains a detailed description of main spectral functions and methods of their calculation. In the third part, the theory is applied to several examples (D-branes, quantum solitons, anomalies, noncommutativity). This book addresses advanced graduate students and researchers in mathematical physics with basic knowledge of quantum field theory and differential geometry. The aim is to prepare readers to use spectral functions in their own research, in particular in relation to heat kernels and zeta functions.

Geometric Asymptotics

Download Geometric Asymptotics PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821816330
Total Pages : 500 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Geometric Asymptotics by : Victor Guillemin

Download or read book Geometric Asymptotics written by Victor Guillemin and published by American Mathematical Soc.. This book was released on 1990 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic geometry and the theory of Fourier integral operators are modern manifestations of themes that have occupied a central position in mathematical thought for the past three hundred years--the relations between the wave and the corpuscular theories of light. The purpose of this book is to develop these themes, and present some of the recent advances, using the language of differential geometry as a unifying influence.

Symplectic Geometry and Mathematical Physics

Download Symplectic Geometry and Mathematical Physics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780817635817
Total Pages : 504 pages
Book Rating : 4.6/5 (358 download)

DOWNLOAD NOW!


Book Synopsis Symplectic Geometry and Mathematical Physics by : P. Donato

Download or read book Symplectic Geometry and Mathematical Physics written by P. Donato and published by Springer Science & Business Media. This book was released on 1991-12 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the conference "Colloque de Goometrie Symplectique et Physique Mathematique" which was held in Aix-en-Provence (France), June 11-15, 1990, in honor of Jean-Marie Souriau. The conference was one in the series of international meetings of the Seminaire Sud Rhodanien de Goometrie, an organization of geometers and mathematical physicists at the Universities of Avignon, Lyon, Mar seille, and Montpellier. The scientific interests of Souriau, one of the founders of geometric quantization, range from classical mechanics (symplectic geometry) and quantization problems to general relativity and astrophysics. The themes of this conference cover "only" the first two of these four areas. The subjects treated in this volume could be classified in the follow ing way: symplectic and Poisson geometry (Arms-Wilbour, Bloch-Ratiu, Brylinski-Kostant, Cushman-Sjamaar, Dufour, Lichnerowicz, Medina, Ouzilou), classical mechanics (Benenti, Holm-Marsden, Marle) , particles and fields in physics (Garcia Perez-Munoz Masque, Gotay, Montgomery, Ne'eman-Sternberg, Sniatycki) and quantization (Blattner, Huebschmann, Karasev, Rawnsley, Roger, Rosso, Weinstein). However, these subjects are so interrelated that a classification by headings such as "pure differential geometry, applications of Lie groups, constrained systems in physics, etc. ," would have produced a completely different clustering! The list of authors is not quite identical to the list of speakers at the conference. M. Karasev was invited but unable to attend; C. Itzykson and M. Vergne spoke on work which is represented here only by the title of Itzykson's talk (Surfaces triangulees et integration matricielle) and a summary of Vergne's talk.

Lectures on Geometric Quantization

Download Lectures on Geometric Quantization PDF Online Free

Author :
Publisher :
ISBN 13 : 9783662191682
Total Pages : 180 pages
Book Rating : 4.1/5 (916 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Geometric Quantization by : D. J. Simms

Download or read book Lectures on Geometric Quantization written by D. J. Simms and published by . This book was released on 2014-01-15 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Quantization of Gauge Systems

Download Quantization of Gauge Systems PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691037691
Total Pages : 556 pages
Book Rating : 4.0/5 (376 download)

DOWNLOAD NOW!


Book Synopsis Quantization of Gauge Systems by : Marc Henneaux

Download or read book Quantization of Gauge Systems written by Marc Henneaux and published by Princeton University Press. This book was released on 1992 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a systematic study of the classical and quantum theories of gauge systems. It starts with Dirac's analysis showing that gauge theories are constrained Hamiltonian systems. The classical foundations of BRST theory are then laid out with a review of the necessary concepts from homological algebra. Reducible gauge systems are discussed, and the relationship between BRST cohomology and gauge invariance is carefully explained. The authors then proceed to the canonical quantization of gauge systems, first without ghosts (reduced phase space quantization, Dirac method) and second in the BRST context (quantum BRST cohomology). The path integral is discussed next. The analysis covers indefinite metric systems, operator insertions, and Ward identities. The antifield formalism is also studied and its equivalence with canonical methods is derived. The examples of electromagnetism and abelian 2-form gauge fields are treated in detail. The book gives a general and unified treatment of the subject in a self-contained manner. Exercises are provided at the end of each chapter, and pedagogical examples are covered in the text.