Lectures on the Geometry of Quantization

Download Lectures on the Geometry of Quantization PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821807989
Total Pages : 150 pages
Book Rating : 4.8/5 (79 download)

DOWNLOAD NOW!


Book Synopsis Lectures on the Geometry of Quantization by : Sean Bates

Download or read book Lectures on the Geometry of Quantization written by Sean Bates and published by American Mathematical Soc.. This book was released on 1997 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on a course entitled ``Symplectic Geometry and Geometric Quantization'' taught by Alan Weinstein at the University of California, Berkeley (fall 1992) and at the Centre Emile Borel (spring 1994). The only prerequisite for the course needed is a knowledge of the basic notions from the theory of differentiable manifolds (differential forms, vector fields, transversality, etc.). The aim is to give students an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and quantum mechanics (unitary flows on Hilbert spaces). These notes are meant to function as a guide to the literature. The authors refer to other sources for many details that are omitted and can be bypassed on a first reading.

Geometric Quantization and Quantum Mechanics

Download Geometric Quantization and Quantum Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461260663
Total Pages : 241 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Geometric Quantization and Quantum Mechanics by : Jedrzej Sniatycki

Download or read book Geometric Quantization and Quantum Mechanics written by Jedrzej Sniatycki and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a revised and expanded version of the lecture notes of two seminar series given during the academic year 1976/77 at the Department of Mathematics and Statistics of the University of Calgary, and in the summer of 1978 at the Institute of Theoretical Physics of the Technical University Clausthal. The aim of the seminars was to present geometric quantization from the point of view· of its applica tions to quantum mechanics, and to introduce the quantum dynamics of various physical systems as the result of the geometric quantization of the classical dynamics of these systems. The group representation aspects of geometric quantiza tion as well as proofs of the existence and the uniqueness of the introduced structures can be found in the expository papers of Blattner, Kostant, Sternberg and Wolf, and also in the references quoted in these papers. The books of Souriau (1970) and Simms and Woodhouse (1976) present the theory of geometric quantization and its relationship to quantum mech anics. The purpose of the present book is to complement the preceding ones by including new developments of the theory and emphasizing the computations leading to results in quantum mechanics.

Geometric Quantization

Download Geometric Quantization PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 9780198502708
Total Pages : 324 pages
Book Rating : 4.5/5 (27 download)

DOWNLOAD NOW!


Book Synopsis Geometric Quantization by : Nicholas Michael John Woodhouse

Download or read book Geometric Quantization written by Nicholas Michael John Woodhouse and published by Oxford University Press. This book was released on 1992 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: The geometric approach to quantization was introduced by Konstant and Souriau more than 20 years ago. It has given valuable and lasting insights into the relationship between classical and quantum systems, and continues to be a popular research topic. The ideas have proved useful in pure mathematics, notably in representation theory, as well as in theoretical physics. The most recent applications have been in conformal field theory and in the Jones-Witten theory of knots. The successful original edition of this book was published in 1980. Now it has been completely revised and extensively rewritten. The presentation has been simplified and many new examples have been added. The material on field theory has been expanded.

Loop Spaces, Characteristic Classes and Geometric Quantization

Download Loop Spaces, Characteristic Classes and Geometric Quantization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817647317
Total Pages : 318 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Loop Spaces, Characteristic Classes and Geometric Quantization by : Jean-Luc Brylinski

Download or read book Loop Spaces, Characteristic Classes and Geometric Quantization written by Jean-Luc Brylinski and published by Springer Science & Business Media. This book was released on 2009-12-30 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the differential geometry of manifolds, loop spaces, line bundles and groupoids, and the relations of this geometry to mathematical physics. Applications presented in the book involve anomaly line bundles on loop spaces and anomaly functionals, central extensions of loop groups, Kähler geometry of the space of knots, and Cheeger--Chern--Simons secondary characteristics classes. It also covers the Dirac monopole and Dirac’s quantization of the electrical charge.

Hamiltonian Mechanical Systems and Geometric Quantization

Download Hamiltonian Mechanical Systems and Geometric Quantization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401119929
Total Pages : 289 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Hamiltonian Mechanical Systems and Geometric Quantization by : Mircea Puta

Download or read book Hamiltonian Mechanical Systems and Geometric Quantization written by Mircea Puta and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents various aspects of the geometry of symplectic and Poisson manifolds, and applications in Hamiltonian mechanics and geometric quantization are indicated. Chapter 1 presents some general facts about symplectic vector space, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study of Hamiltonian mechanics. Chapter 3 considers some standard facts concerning Lie groups and algebras which lead to the theory of momentum mappings and the Marsden--Weinstein reduction. Chapters 4 and 5 consider the theory and the stability of equilibrium solutions of Hamilton--Poisson mechanical systems. Chapters 6 and 7 are devoted to the theory of geometric quantization. This leads, in Chapter 8, to topics such as foliated cohomology, the theory of the Dolbeault--Kostant complex, and their applications. A discussion of the relation between geometric quantization and the Marsden--Weinstein reduction is presented in Chapter 9. The final chapter considers extending the theory of geometric quantization to Poisson manifolds, via the theory of symplectic groupoids. Each chapter concludes with problems and solutions, many of which present significant applications and, in some cases, major theorems. For graduate students and researchers whose interests and work involve symplectic geometry and Hamiltonian mechanics.

Geometric Quantization in Action

Download Geometric Quantization in Action PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9789027714268
Total Pages : 362 pages
Book Rating : 4.7/5 (142 download)

DOWNLOAD NOW!


Book Synopsis Geometric Quantization in Action by : N.E. Hurt

Download or read book Geometric Quantization in Action written by N.E. Hurt and published by Springer Science & Business Media. This book was released on 1982-12-31 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then, is that they can't see the problem. one day, perhaps you will fmd the final question. G. K. Chesterton, The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geo metry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical progmmming profit from homotopy theory; Lie algebras are relevant to fIltering; and prediction and electrical engineering can use Stein spaces.

Geometric Quantization in Action

Download Geometric Quantization in Action PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400969635
Total Pages : 351 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Geometric Quantization in Action by : N.E. Hurt

Download or read book Geometric Quantization in Action written by N.E. Hurt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then, is that they can't see the problem. one day, perhaps you will fmd the final question. G. K. Chesterton, The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geo metry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical progmmming profit from homotopy theory; Lie algebras are relevant to fIltering; and prediction and electrical engineering can use Stein spaces.

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics

Download Quantization, Geometry and Noncommutative Structures in Mathematics and Physics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319654276
Total Pages : 347 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Quantization, Geometry and Noncommutative Structures in Mathematics and Physics by : Alexander Cardona

Download or read book Quantization, Geometry and Noncommutative Structures in Mathematics and Physics written by Alexander Cardona and published by Springer. This book was released on 2017-10-26 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.

Integrability, Quantization, and Geometry: I. Integrable Systems

Download Integrability, Quantization, and Geometry: I. Integrable Systems PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470455919
Total Pages : 516 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Integrability, Quantization, and Geometry: I. Integrable Systems by : Sergey Novikov

Download or read book Integrability, Quantization, and Geometry: I. Integrable Systems written by Sergey Novikov and published by American Mathematical Soc.. This book was released on 2021-04-12 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.

Lectures on Geometric Quantization

Download Lectures on Geometric Quantization PDF Online Free

Author :
Publisher :
ISBN 13 : 9783662191682
Total Pages : 180 pages
Book Rating : 4.1/5 (916 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Geometric Quantization by : D. J. Simms

Download or read book Lectures on Geometric Quantization written by D. J. Simms and published by . This book was released on 2014-01-15 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geometric Asymptotics

Download Geometric Asymptotics PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821816330
Total Pages : 500 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Geometric Asymptotics by : Victor Guillemin

Download or read book Geometric Asymptotics written by Victor Guillemin and published by American Mathematical Soc.. This book was released on 1990 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic geometry and the theory of Fourier integral operators are modern manifestations of themes that have occupied a central position in mathematical thought for the past three hundred years--the relations between the wave and the corpuscular theories of light. The purpose of this book is to develop these themes, and present some of the recent advances, using the language of differential geometry as a unifying influence.

The Geometry of Heisenberg Groups

Download The Geometry of Heisenberg Groups PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821844954
Total Pages : 321 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Heisenberg Groups by : Ernst Binz

Download or read book The Geometry of Heisenberg Groups written by Ernst Binz and published by American Mathematical Soc.. This book was released on 2008 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The three-dimensional Heisenberg group, being a quite simple non-commutative Lie group, appears prominently in various applications of mathematics. The goal of this book is to present basic geometric and algebraic properties of the Heisenberg group and its relation to other important mathematical structures (the skew field of quaternions, symplectic structures, and representations) and to describe some of its applications. In particular, the authors address such subjects as signal analysis and processing, geometric optics, and quantization. In each case, the authors present necessary details of the applied topic being considered." "This book manages to encompass a large variety of topics being easily accessible in its fundamentals. It can be useful to students and researchers working in mathematics and in applied mathematics."--BOOK JACKET.

Geometric Formulation of Classical and Quantum Mechanics

Download Geometric Formulation of Classical and Quantum Mechanics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814313726
Total Pages : 405 pages
Book Rating : 4.8/5 (143 download)

DOWNLOAD NOW!


Book Synopsis Geometric Formulation of Classical and Quantum Mechanics by : G. Giachetta

Download or read book Geometric Formulation of Classical and Quantum Mechanics written by G. Giachetta and published by World Scientific. This book was released on 2011 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. This book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent coordinate and reference frame transformations.

The Physics of Phase Space

Download The Physics of Phase Space PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540479015
Total Pages : 457 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis The Physics of Phase Space by : Young S. Kim

Download or read book The Physics of Phase Space written by Young S. Kim and published by Springer. This book was released on 2005-09-13 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of phase space plays a decisive role in the study of the transition from classical to quantum physics. This is particularly the case in areas such as nonlinear dynamics and chaos, geometric quantization and the study of the various semi-classical theories, which are the setting of the present volume. Much of the content is devoted to the study of the Wigner distribution. This volume gives the first complete survey of the progress made by both mathematicians and physicists. It will serve as an excellent reference for further research.

Geometry, Topology and Quantization

Download Geometry, Topology and Quantization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401154260
Total Pages : 236 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Geometry, Topology and Quantization by : P. Bandyopadhyay

Download or read book Geometry, Topology and Quantization written by P. Bandyopadhyay and published by Springer Science & Business Media. This book was released on 2013-03-07 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a monograph on geometrical and topological features which arise in various quantization procedures. Quantization schemes consider the feasibility of arriving at a quantum system from a classical one and these involve three major procedures viz. i) geometric quantization, ii) Klauder quantization, and iii) stochastic quanti zation. In geometric quantization we have to incorporate a hermitian line bundle to effectively generate the quantum Hamiltonian operator from a classical Hamil tonian. Klauder quantization also takes into account the role of the connection one-form along with coordinate independence. In stochastic quantization as pro posed by Nelson, Schrodinger equation is derived from Brownian motion processes; however, we have difficulty in its relativistic generalization. It has been pointed out by several authors that this may be circumvented by formulating a new geometry where Brownian motion proceses are considered in external as well as in internal space and, when the complexified space-time is considered, the usual path integral formulation is achieved. When this internal space variable is considered as a direc tion vector introducing an anisotropy in the internal space, we have the quantization of a Fermi field. This helps us to formulate a stochastic phase space formalism when the internal extension can be treated as a gauge theoretic extension. This suggests that massive fermions may be considered as Skyrme solitons. The nonrelativistic quantum mechanics is achieved in the sharp point limit.

Symplectic Geometry and Quantum Mechanics

Download Symplectic Geometry and Quantum Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764375752
Total Pages : 375 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Symplectic Geometry and Quantum Mechanics by : Maurice A. de Gosson

Download or read book Symplectic Geometry and Quantum Mechanics written by Maurice A. de Gosson and published by Springer Science & Business Media. This book was released on 2006-08-06 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a complete discussion of techniques and topics intervening in the mathematical treatment of quantum and semi-classical mechanics. It starts with a very readable introduction to symplectic geometry. Many topics are also of genuine interest for pure mathematicians working in geometry and topology.

Quantum Theory for Mathematicians

Download Quantum Theory for Mathematicians PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461471168
Total Pages : 566 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Quantum Theory for Mathematicians by : Brian C. Hall

Download or read book Quantum Theory for Mathematicians written by Brian C. Hall and published by Springer Science & Business Media. This book was released on 2013-06-19 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.