Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Geometric Numerical Integration
Download Geometric Numerical Integration full books in PDF, epub, and Kindle. Read online Geometric Numerical Integration ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Geometric Numerical Integration by : Ernst Hairer
Download or read book Geometric Numerical Integration written by Ernst Hairer and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by numerous figures, treats applications from physics and astronomy, and contains many numerical experiments and comparisons of different approaches.
Book Synopsis A Concise Introduction to Geometric Numerical Integration by : Sergio Blanes
Download or read book A Concise Introduction to Geometric Numerical Integration written by Sergio Blanes and published by CRC Press. This book was released on 2017-11-22 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover How Geometric Integrators Preserve the Main Qualitative Properties of Continuous Dynamical Systems A Concise Introduction to Geometric Numerical Integration presents the main themes, techniques, and applications of geometric integrators for researchers in mathematics, physics, astronomy, and chemistry who are already familiar with numerical tools for solving differential equations. It also offers a bridge from traditional training in the numerical analysis of differential equations to understanding recent, advanced research literature on numerical geometric integration. The book first examines high-order classical integration methods from the structure preservation point of view. It then illustrates how to construct high-order integrators via the composition of basic low-order methods and analyzes the idea of splitting. It next reviews symplectic integrators constructed directly from the theory of generating functions as well as the important category of variational integrators. The authors also explain the relationship between the preservation of the geometric properties of a numerical method and the observed favorable error propagation in long-time integration. The book concludes with an analysis of the applicability of splitting and composition methods to certain classes of partial differential equations, such as the Schrödinger equation and other evolution equations. The motivation of geometric numerical integration is not only to develop numerical methods with improved qualitative behavior but also to provide more accurate long-time integration results than those obtained by general-purpose algorithms. Accessible to researchers and post-graduate students from diverse backgrounds, this introductory book gets readers up to speed on the ideas, methods, and applications of this field. Readers can reproduce the figures and results given in the text using the MATLAB® programs and model files available online.
Book Synopsis Simulating Hamiltonian Dynamics by : Benedict Leimkuhler
Download or read book Simulating Hamiltonian Dynamics written by Benedict Leimkuhler and published by Cambridge University Press. This book was released on 2004 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject.
Book Synopsis Foundations of Computational Mathematics by : Ronald A. DeVore
Download or read book Foundations of Computational Mathematics written by Ronald A. DeVore and published by Cambridge University Press. This book was released on 2001-05-17 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collection of papers by leading researchers in computational mathematics, suitable for graduate students and researchers.
Book Synopsis Line Integral Methods for Conservative Problems by : Luigi Brugnano
Download or read book Line Integral Methods for Conservative Problems written by Luigi Brugnano and published by CRC Press. This book was released on 2016-03-09 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: Line Integral Methods for Conservative Problems explains the numerical solution of differential equations within the framework of geometric integration, a branch of numerical analysis that devises numerical methods able to reproduce (in the discrete solution) relevant geometric properties of the continuous vector field. The book focuses on a large
Book Synopsis Numerical Geometry of Images by : Ron Kimmel
Download or read book Numerical Geometry of Images written by Ron Kimmel and published by Springer Science & Business Media. This book was released on 2012-09-07 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Geometry of Images examines computational methods and algorithms in image processing. It explores applications like shape from shading, color-image enhancement and segmentation, edge integration, offset curve computation, symmetry axis computation, path planning, minimal geodesic computation, and invariant signature calculation. In addition, it describes and utilizes tools from mathematical morphology, differential geometry, numerical analysis, and calculus of variations. Graduate students, professionals, and researchers with interests in computational geometry, image processing, computer graphics, and algorithms will find this new text / reference an indispensable source of insight of instruction.
Book Synopsis Symplectic Geometric Algorithms for Hamiltonian Systems by : Kang Feng
Download or read book Symplectic Geometric Algorithms for Hamiltonian Systems written by Kang Feng and published by Springer Science & Business Media. This book was released on 2010-10-18 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Symplectic Geometric Algorithms for Hamiltonian Systems" will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equation theory from the perspective of the symplectic geometry and symplectic algebra. It will be a useful resource for engineers and scientists in the fields of quantum theory, astrophysics, atomic and molecular dynamics, climate prediction, oil exploration, etc. Therefore a systematic research and development of numerical methodology for Hamiltonian systems is well motivated. Were it successful, it would imply wide-ranging applications.
Book Synopsis A First Course in the Numerical Analysis of Differential Equations by : A. Iserles
Download or read book A First Course in the Numerical Analysis of Differential Equations written by A. Iserles and published by Cambridge University Press. This book was released on 2009 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.
Book Synopsis Geometric Integration Theory by : Steven G. Krantz
Download or read book Geometric Integration Theory written by Steven G. Krantz and published by Springer Science & Business Media. This book was released on 2008-12-15 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.
Book Synopsis A Concise Introduction to Geometric Numerical Integration by : Sergio Blanes
Download or read book A Concise Introduction to Geometric Numerical Integration written by Sergio Blanes and published by CRC Press. This book was released on 2017-11-22 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover How Geometric Integrators Preserve the Main Qualitative Properties of Continuous Dynamical Systems A Concise Introduction to Geometric Numerical Integration presents the main themes, techniques, and applications of geometric integrators for researchers in mathematics, physics, astronomy, and chemistry who are already familiar with numerical tools for solving differential equations. It also offers a bridge from traditional training in the numerical analysis of differential equations to understanding recent, advanced research literature on numerical geometric integration. The book first examines high-order classical integration methods from the structure preservation point of view. It then illustrates how to construct high-order integrators via the composition of basic low-order methods and analyzes the idea of splitting. It next reviews symplectic integrators constructed directly from the theory of generating functions as well as the important category of variational integrators. The authors also explain the relationship between the preservation of the geometric properties of a numerical method and the observed favorable error propagation in long-time integration. The book concludes with an analysis of the applicability of splitting and composition methods to certain classes of partial differential equations, such as the Schrödinger equation and other evolution equations. The motivation of geometric numerical integration is not only to develop numerical methods with improved qualitative behavior but also to provide more accurate long-time integration results than those obtained by general-purpose algorithms. Accessible to researchers and post-graduate students from diverse backgrounds, this introductory book gets readers up to speed on the ideas, methods, and applications of this field. Readers can reproduce the figures and results given in the text using the MATLAB® programs and model files available online.
Download or read book B-Series written by John C. Butcher and published by Springer Nature. This book was released on 2021-04-01 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: B-series, also known as Butcher series, are an algebraic tool for analysing solutions to ordinary differential equations, including approximate solutions. Through the formulation and manipulation of these series, properties of numerical methods can be assessed. Runge–Kutta methods, in particular, depend on B-series for a clean and elegant approach to the derivation of high order and efficient methods. However, the utility of B-series goes much further and opens a path to the design and construction of highly accurate and efficient multivalue methods. This book offers a self-contained introduction to B-series by a pioneer of the subject. After a preliminary chapter providing background on differential equations and numerical methods, a broad exposition of graphs and trees is presented. This is essential preparation for the third chapter, in which the main ideas of B-series are introduced and developed. In chapter four, algebraic aspects are further analysed in the context of integration methods, a generalization of Runge–Kutta methods to infinite index sets. Chapter five, on explicit and implicit Runge–Kutta methods, contrasts the B-series and classical approaches. Chapter six, on multivalue methods, gives a traditional review of linear multistep methods and expands this to general linear methods, for which the B-series approach is both natural and essential. The final chapter introduces some aspects of geometric integration, from a B-series point of view. Placing B-series at the centre of its most important applications makes this book an invaluable resource for scientists, engineers and mathematicians who depend on computational modelling, not to mention computational scientists who carry out research on numerical methods in differential equations. In addition to exercises with solutions and study notes, a number of open-ended projects are suggested. This combination makes the book ideal as a textbook for specialised courses on numerical methods for differential equations, as well as suitable for self-study.
Book Synopsis Numerical Methods for Ordinary Differential Equations by : David F. Griffiths
Download or read book Numerical Methods for Ordinary Differential Equations written by David F. Griffiths and published by Springer Science & Business Media. This book was released on 2010-11-11 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com
Book Synopsis Numerical Methods for Evolutionary Differential Equations by : Uri M. Ascher
Download or read book Numerical Methods for Evolutionary Differential Equations written by Uri M. Ascher and published by SIAM. This book was released on 2008-09-04 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develops, analyses, and applies numerical methods for evolutionary, or time-dependent, differential problems.
Book Synopsis The Riemann Approach to Integration by : Washek F. Pfeffer
Download or read book The Riemann Approach to Integration written by Washek F. Pfeffer and published by Cambridge University Press. This book was released on 1993 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed exposition of generalised Riemann-Stieltjes integrals.
Book Synopsis Numerical Hamiltonian Problems by : J.M. Sanz-Serna
Download or read book Numerical Hamiltonian Problems written by J.M. Sanz-Serna and published by Courier Dover Publications. This book was released on 2018-06-13 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced text explores mathematical problems that occur frequently in physics and other sciences. Topics include symplectic integration, symplectic order conditions, available symplectic methods, numerical experiments, properties of symplectic integrators. 1994 edition.
Book Synopsis Geometric Mechanics by : Waldyr Muniz Oliva
Download or read book Geometric Mechanics written by Waldyr Muniz Oliva and published by Springer. This book was released on 2004-10-23 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric Mechanics here means mechanics on a pseudo-riemannian manifold and the main goal is the study of some mechanical models and concepts, with emphasis on the intrinsic and geometric aspects arising in classical problems. The first seven chapters are written in the spirit of Newtonian Mechanics while the last two ones as well as two of the four appendices describe the foundations and some aspects of Special and General Relativity. All the material has a coordinate free presentation but, for the sake of motivation, many examples and exercises are included in order to exhibit the desirable flavor of physical applications.
Book Synopsis Highly Oscillatory Problems by : Bjorn Engquist
Download or read book Highly Oscillatory Problems written by Bjorn Engquist and published by Cambridge University Press. This book was released on 2009-07-02 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Review papers from experts in areas of active research into highly oscillatory problems, with an emphasis on computation.