Geometric Modular Forms and Elliptic Curves

Download Geometric Modular Forms and Elliptic Curves PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810243371
Total Pages : 382 pages
Book Rating : 4.2/5 (433 download)

DOWNLOAD NOW!


Book Synopsis Geometric Modular Forms and Elliptic Curves by : Haruzo Hida

Download or read book Geometric Modular Forms and Elliptic Curves written by Haruzo Hida and published by World Scientific. This book was released on 2000 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive account of the theory of moduli spaces of elliptic curves (over integer rings) and its application to modular forms. The construction of Galois representations, which play a fundamental role in Wiles' proof of the Shimura -- Taniyama conjecture, is given. In addition, the book presents an outline of the proof of diverse modularity results of two-dimensional Galois representations (including that of Wiles), as well as some of the author's new results in that direction.

Geometric Modular Forms and Elliptic Curves

Download Geometric Modular Forms and Elliptic Curves PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814368652
Total Pages : 468 pages
Book Rating : 4.8/5 (143 download)

DOWNLOAD NOW!


Book Synopsis Geometric Modular Forms and Elliptic Curves by : Haruzo Hida

Download or read book Geometric Modular Forms and Elliptic Curves written by Haruzo Hida and published by World Scientific. This book was released on 2012 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. An algebro-geometric tool box. 1.1. Sheaves. 1.2. Schemes. 1.3. Projective schemes. 1.4. Categories and functors. 1.5. Applications of the key-lemma. 1.6. Group schemes. 1.7. Cartier duality. 1.8. Quotients by a group scheme. 1.9. Morphisms. 1.10. Cohomology of coherent sheaves. 1.11. Descent. 1.12. Barsotti-Tate groups. 1.13. Formal scheme -- 2. Elliptic curves. 2.1. Curves and divisors. 2.2. Elliptic curves. 2.3. Geometric modular forms of level 1. 2.4. Elliptic curves over C. 2.5. Elliptic curves over p-adic fields. 2.6. Level structures. 2.7. L-functions of elliptic curves. 2.8. Regularity. 2.9. p-ordinary moduli problems. 2.10. Deformation of elliptic curves -- 3. Geometric modular forms. 3.1. Integrality. 3.2. Vertical control theorem. 3.3. Action of GL(2) on modular forms -- 4. Jacobians and Galois representations. 4.1. Jacobians of stable curves. 4.2. Modular Galois representations. 4.3. Fullness of big Galois representations -- 5. Modularity problems. 5.1. Induced and extended Galois representations. 5.2. Some other solutions. 5.3. Modularity of Abelian Q-varieties

Geometric Modular Forms And Elliptic Curves (2nd Edition)

Download Geometric Modular Forms And Elliptic Curves (2nd Edition) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 981440523X
Total Pages : 468 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Geometric Modular Forms And Elliptic Curves (2nd Edition) by : Haruzo Hida

Download or read book Geometric Modular Forms And Elliptic Curves (2nd Edition) written by Haruzo Hida and published by World Scientific. This book was released on 2011-12-28 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive account of the theory of moduli spaces of elliptic curves (over integer rings) and its application to modular forms. The construction of Galois representations, which play a fundamental role in Wiles' proof of the Shimura-Taniyama conjecture, is given. In addition, the book presents an outline of the proof of diverse modularity results of two-dimensional Galois representations (including that of Wiles), as well as some of the author's new results in that direction.In this new second edition, a detailed description of Barsotti-Tate groups (including formal Lie groups) is added to Chapter 1. As an application, a down-to-earth description of formal deformation theory of elliptic curves is incorporated at the end of Chapter 2 (in order to make the proof of regularity of the moduli of elliptic curve more conceptual), and in Chapter 4, though limited to ordinary cases, newly incorporated are Ribet's theorem of full image of modular p-adic Galois representation and its generalization to ‘big’ Λ-adic Galois representations under mild assumptions (a new result of the author). Though some of the striking developments described above is out of the scope of this introductory book, the author gives a taste of present day research in the area of Number Theory at the very end of the book (giving a good account of modularity theory of abelian ℚ-varieties and ℚ-curves).

Rational Points on Elliptic Curves

Download Rational Points on Elliptic Curves PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475742525
Total Pages : 292 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Rational Points on Elliptic Curves by : Joseph H. Silverman

Download or read book Rational Points on Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.

The 1-2-3 of Modular Forms

Download The 1-2-3 of Modular Forms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540741194
Total Pages : 273 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis The 1-2-3 of Modular Forms by : Jan Hendrik Bruinier

Download or read book The 1-2-3 of Modular Forms written by Jan Hendrik Bruinier and published by Springer Science & Business Media. This book was released on 2008-02-10 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.

Introduction to Elliptic Curves and Modular Forms

Download Introduction to Elliptic Curves and Modular Forms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461209099
Total Pages : 262 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Elliptic Curves and Modular Forms by : Neal I. Koblitz

Download or read book Introduction to Elliptic Curves and Modular Forms written by Neal I. Koblitz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves and modular forms provides a fruitful meeting ground for such diverse areas as number theory, complex analysis, algebraic geometry, and representation theory. This book starts out with a problem from elementary number theory and proceeds to lead its reader into the modern theory, covering such topics as the Hasse-Weil L-function and the conjecture of Birch and Swinnerton-Dyer. This new edition details the current state of knowledge of elliptic curves.

Some Applications of Modular Forms

Download Some Applications of Modular Forms PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316582442
Total Pages : 124 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Some Applications of Modular Forms by : Peter Sarnak

Download or read book Some Applications of Modular Forms written by Peter Sarnak and published by Cambridge University Press. This book was released on 1990-11-15 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of modular forms and especially the so-called 'Ramanujan Conjectures' have been applied to resolve problems in combinatorics, computer science, analysis and number theory. This tract, based on the Wittemore Lectures given at Yale University, is concerned with describing some of these applications. In order to keep the presentation reasonably self-contained, Professor Sarnak begins by developing the necessary background material in modular forms. He then considers the solution of three problems: the Ruziewicz problem concerning finitely additive rotationally invariant measures on the sphere; the explicit construction of highly connected but sparse graphs: 'expander graphs' and 'Ramanujan graphs'; and the Linnik problem concerning the distribution of integers that represent a given large integer as a sum of three squares. These applications are carried out in detail. The book therefore should be accessible to a wide audience of graduate students and researchers in mathematics and computer science.

LMSST: 24 Lectures on Elliptic Curves

Download LMSST: 24 Lectures on Elliptic Curves PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521425308
Total Pages : 148 pages
Book Rating : 4.4/5 (253 download)

DOWNLOAD NOW!


Book Synopsis LMSST: 24 Lectures on Elliptic Curves by : John William Scott Cassels

Download or read book LMSST: 24 Lectures on Elliptic Curves written by John William Scott Cassels and published by Cambridge University Press. This book was released on 1991-11-21 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introductory text for beginning graduate students that is contemporary in approach without ignoring historical matters.

A First Course in Modular Forms

Download A First Course in Modular Forms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387272267
Total Pages : 462 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Modular Forms by : Fred Diamond

Download or read book A First Course in Modular Forms written by Fred Diamond and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.

Elliptic Curves (Second Edition)

Download Elliptic Curves (Second Edition) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811221855
Total Pages : 319 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Curves (Second Edition) by : James S Milne

Download or read book Elliptic Curves (Second Edition) written by James S Milne and published by World Scientific. This book was released on 2020-08-20 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses.An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer.Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work.The first three chapters develop the basic theory of elliptic curves.For this edition, the text has been completely revised and updated.

Modular Forms: A Classical And Computational Introduction (2nd Edition)

Download Modular Forms: A Classical And Computational Introduction (2nd Edition) PDF Online Free

Author :
Publisher : World Scientific Publishing Company
ISBN 13 : 1783265477
Total Pages : 252 pages
Book Rating : 4.7/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Modular Forms: A Classical And Computational Introduction (2nd Edition) by : Lloyd James Peter Kilford

Download or read book Modular Forms: A Classical And Computational Introduction (2nd Edition) written by Lloyd James Peter Kilford and published by World Scientific Publishing Company. This book was released on 2015-03-12 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modular Forms is a graduate student-level introduction to the classical theory of modular forms and computations involving modular forms, including modular functions and the theory of Hecke operators. It also includes applications of modular forms to various subjects, such as the theory of quadratic forms, the proof of Fermat's Last Theorem and the approximation of π. The text gives a balanced overview of both the theoretical and computational sides of its subject, allowing a variety of courses to be taught from it.This second edition has been revised and updated. New material on the future of modular forms as well as a chapter about longer-form projects for students has also been added.

Rational Points on Modular Elliptic Curves

Download Rational Points on Modular Elliptic Curves PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821828681
Total Pages : 146 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Rational Points on Modular Elliptic Curves by : Henri Darmon

Download or read book Rational Points on Modular Elliptic Curves written by Henri Darmon and published by American Mathematical Soc.. This book was released on 2004 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.

Topological Modular Forms

Download Topological Modular Forms PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470418843
Total Pages : 353 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Topological Modular Forms by : Christopher L. Douglas

Download or read book Topological Modular Forms written by Christopher L. Douglas and published by American Mathematical Soc.. This book was released on 2014-12-04 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of topological modular forms is an intricate blend of classical algebraic modular forms and stable homotopy groups of spheres. The construction of this theory combines an algebro-geometric perspective on elliptic curves over finite fields with techniques from algebraic topology, particularly stable homotopy theory. It has applications to and connections with manifold topology, number theory, and string theory. This book provides a careful, accessible introduction to topological modular forms. After a brief history and an extended overview of the subject, the book proper commences with an exposition of classical aspects of elliptic cohomology, including background material on elliptic curves and modular forms, a description of the moduli stack of elliptic curves, an explanation of the exact functor theorem for constructing cohomology theories, and an exploration of sheaves in stable homotopy theory. There follows a treatment of more specialized topics, including localization of spectra, the deformation theory of formal groups, and Goerss-Hopkins obstruction theory for multiplicative structures on spectra. The book then proceeds to more advanced material, including discussions of the string orientation, the sheaf of spectra on the moduli stack of elliptic curves, the homotopy of topological modular forms, and an extensive account of the construction of the spectrum of topological modular forms. The book concludes with the three original, pioneering and enormously influential manuscripts on the subject, by Hopkins, Miller, and Mahowald.

Abelian l-Adic Representations and Elliptic Curves

Download Abelian l-Adic Representations and Elliptic Curves PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439863865
Total Pages : 203 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Abelian l-Adic Representations and Elliptic Curves by : Jean-Pierre Serre

Download or read book Abelian l-Adic Representations and Elliptic Curves written by Jean-Pierre Serre and published by CRC Press. This book was released on 1997-11-15 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one

Modular Forms, a Computational Approach

Download Modular Forms, a Computational Approach PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821839608
Total Pages : 290 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Modular Forms, a Computational Approach by : William A. Stein

Download or read book Modular Forms, a Computational Approach written by William A. Stein and published by American Mathematical Soc.. This book was released on 2007-02-13 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.

Automorphic Forms on GL (3,TR)

Download Automorphic Forms on GL (3,TR) PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540390553
Total Pages : 196 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Automorphic Forms on GL (3,TR) by : D. Bump

Download or read book Automorphic Forms on GL (3,TR) written by D. Bump and published by Springer. This book was released on 2006-12-08 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Elliptic Curves, Modular Forms, and Their L-functions

Download Elliptic Curves, Modular Forms, and Their L-functions PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821852426
Total Pages : 217 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Curves, Modular Forms, and Their L-functions by : Álvaro Lozano-Robledo

Download or read book Elliptic Curves, Modular Forms, and Their L-functions written by Álvaro Lozano-Robledo and published by American Mathematical Soc.. This book was released on 2011 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and $L$-functions. His main goal is to provide the reader with the big picture of the surprising connections among these three families of mathematical objects and their meaning for number theory. As a case in point, Lozano-Robledo explains the modularity theorem and its famous consequence, Fermat's Last Theorem. He also discusses the Birch and Swinnerton-Dyer Conjecture and other modern conjectures. The book begins with some motivating problems and includes numerous concrete examples throughout the text, often involving actual numbers, such as 3, 4, 5, $\frac{3344161}{747348}$, and $\frac{2244035177043369699245575130906674863160948472041} {8912332268928859588025535178967163570016480830}$. The theories of elliptic curves, modular forms, and $L$-functions are too vast to be covered in a single volume, and their proofs are outside the scope of the undergraduate curriculum. However, the primary objects of study, the statements of the main theorems, and their corollaries are within the grasp of advanced undergraduates. This book concentrates on motivating the definitions, explaining the statements of the theorems and conjectures, making connections, and providing lots of examples, rather than dwelling on the hard proofs. The book succeeds if, after reading the text, students feel compelled to study elliptic curves and modular forms in all their glory.