Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Geometric And Harmonic Analysis On Homogeneous Spaces
Download Geometric And Harmonic Analysis On Homogeneous Spaces full books in PDF, epub, and Kindle. Read online Geometric And Harmonic Analysis On Homogeneous Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Geometric and Harmonic Analysis on Homogeneous Spaces by : Ali Baklouti
Download or read book Geometric and Harmonic Analysis on Homogeneous Spaces written by Ali Baklouti and published by Springer Nature. This book was released on 2019-08-31 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a number of important contributions focusing on harmonic analysis and representation theory of Lie groups. All were originally presented at the 5th Tunisian–Japanese conference “Geometric and Harmonic Analysis on Homogeneous Spaces and Applications”, which was held at Mahdia in Tunisia from 17 to 21 December 2017 and was dedicated to the memory of the brilliant Tunisian mathematician Majdi Ben Halima. The peer-reviewed contributions selected for publication have been modified and are, without exception, of a standard equivalent to that in leading mathematical periodicals. Highlighting the close links between group representation theory and harmonic analysis on homogeneous spaces and numerous mathematical areas, such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations and mathematical physics, the book is intended for researchers and students working in the area of commutative and non-commutative harmonic analysis as well as group representations.
Book Synopsis Geometric and Harmonic Analysis on Homogeneous Spaces and Applications by : Ali Baklouti
Download or read book Geometric and Harmonic Analysis on Homogeneous Spaces and Applications written by Ali Baklouti and published by Springer Nature. This book was released on 2021-10-29 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects a series of important works on noncommutative harmonic analysis on homogeneous spaces and related topics. All the authors participated in the 6th Tunisian-Japanese conference "Geometric and Harmonic Analysis on homogeneous spaces and Applications" held at Djerba Island in Tunisia during the period of December 16-19, 2019. The aim of this conference and the five preceding Tunisian-Japanese meetings was to keep up with the active development of representation theory interrelated with various other mathematical fields, such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations, and mathematical physics. The present volume is dedicated to the memory of Takaaki Nomura, who organized the series of Tunisian-Japanese conferences with great effort and enthusiasm. The book is a valuable resource for researchers and students working in various areas of analysis, geometry, and algebra in connection with representation theory.
Book Synopsis Harmonic Analysis on Spaces of Homogeneous Type by : Donggao Deng
Download or read book Harmonic Analysis on Spaces of Homogeneous Type written by Donggao Deng and published by Springer Science & Business Media. This book was released on 2008-11-19 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book could have been entitled “Analysis and Geometry.” The authors are addressing the following issue: Is it possible to perform some harmonic analysis on a set? Harmonic analysis on groups has a long tradition. Here we are given a metric set X with a (positive) Borel measure ? and we would like to construct some algorithms which in the classical setting rely on the Fourier transformation. Needless to say, the Fourier transformation does not exist on an arbitrary metric set. This endeavor is not a revolution. It is a continuation of a line of research whichwasinitiated,acenturyago,withtwofundamentalpapersthatIwould like to discuss brie?y. The ?rst paper is the doctoral dissertation of Alfred Haar, which was submitted at to University of Gottingen ̈ in July 1907. At that time it was known that the Fourier series expansion of a continuous function may diverge at a given point. Haar wanted to know if this phenomenon happens for every 2 orthonormal basis of L [0,1]. He answered this question by constructing an orthonormal basis (today known as the Haar basis) with the property that the expansion (in this basis) of any continuous function uniformly converges to that function.
Book Synopsis Harmonic Analysis on Homogeneous Spaces by : Nolan R. Wallach
Download or read book Harmonic Analysis on Homogeneous Spaces written by Nolan R. Wallach and published by Courier Dover Publications. This book was released on 2018-12-18 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is suitable for advanced undergraduate and graduate students in mathematics with a strong background in linear algebra and advanced calculus. Early chapters develop representation theory of compact Lie groups with applications to topology, geometry, and analysis, including the Peter-Weyl theorem, the theorem of the highest weight, the character theory, invariant differential operators on homogeneous vector bundles, and Bott's index theorem for such operators. Later chapters study the structure of representation theory and analysis of non-compact semi-simple Lie groups, including the principal series, intertwining operators, asymptotics of matrix coefficients, and an important special case of the Plancherel theorem. Teachers will find this volume useful as either a main text or a supplement to standard one-year courses in Lie groups and Lie algebras. The treatment advances from fairly simple topics to more complex subjects, and exercises appear at the end of each chapter. Eight helpful Appendixes develop aspects of differential geometry, Lie theory, and functional analysis employed in the main text.
Book Synopsis An Introduction to Lie Groups and the Geometry of Homogeneous Spaces by : Andreas Arvanitogeōrgos
Download or read book An Introduction to Lie Groups and the Geometry of Homogeneous Spaces written by Andreas Arvanitogeōrgos and published by American Mathematical Soc.. This book was released on 2003 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is remarkable that so much about Lie groups could be packed into this small book. But after reading it, students will be well-prepared to continue with more advanced, graduate-level topics in differential geometry or the theory of Lie groups. The theory of Lie groups involves many areas of mathematics. In this book, Arvanitoyeorgos outlines enough of the prerequisites to get the reader started. He then chooses a path through this rich and diverse theory that aims for an understanding of the geometry of Lie groups and homogeneous spaces. In this way, he avoids the extra detail needed for a thorough discussion of other topics. Lie groups and homogeneous spaces are especially useful to study in geometry, as they provide excellent examples where quantities (such as curvature) are easier to compute. A good understanding of them provides lasting intuition, especially in differential geometry. The book is suitable for advanced undergraduates, graduate students, and research mathematicians interested in differential geometry and neighboring fields, such as topology, harmonic analysis, and mathematical physics.
Book Synopsis Homogeneous Spaces and Equivariant Embeddings by : D.A. Timashev
Download or read book Homogeneous Spaces and Equivariant Embeddings written by D.A. Timashev and published by Springer. This book was released on 2011-04-07 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space, it is natural and helpful to compactify it while keeping track of the group action, i.e., to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on the classification of equivariant embeddings in terms of certain data of "combinatorial" nature (the Luna-Vust theory) and description of various geometric and representation-theoretic properties of these varieties based on these data. The class of spherical varieties, intensively studied during the last three decades, is of special interest in the scope of this book. Spherical varieties include many classical examples, such as Grassmannians, flag varieties, and varieties of quadrics, as well as well-known toric varieties. We have attempted to cover most of the important issues, including the recent substantial progress obtained in and around the theory of spherical varieties.
Book Synopsis Causal Symmetric Spaces by : Gestur Olafsson
Download or read book Causal Symmetric Spaces written by Gestur Olafsson and published by Academic Press. This book was released on 1996-09-11 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces
Book Synopsis Representation Theory and Noncommutative Harmonic Analysis II by : A.A. Kirillov
Download or read book Representation Theory and Noncommutative Harmonic Analysis II written by A.A. Kirillov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two surveys introducing readers to the subjects of harmonic analysis on semi-simple spaces and group theoretical methods, and preparing them for the study of more specialised literature. This book will be very useful to students and researchers in mathematics, theoretical physics and those chemists dealing with quantum systems.
Book Synopsis Harmonic Analysis on Commutative Spaces by : Joseph Albert Wolf
Download or read book Harmonic Analysis on Commutative Spaces written by Joseph Albert Wolf and published by American Mathematical Soc.. This book was released on 2007 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study starts with the basic theory of topological groups, harmonic analysis, and unitary representations. It then concentrates on geometric structure, harmonic analysis, and unitary representation theory in commutative spaces.
Book Synopsis Geometric Analysis on Symmetric Spaces by : Sigurdur Helgason
Download or read book Geometric Analysis on Symmetric Spaces written by Sigurdur Helgason and published by American Mathematical Society. This book was released on 2024-09-27 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives the first systematic exposition of geometric analysis on Riemannian symmetric spaces and its relationship to the representation theory of Lie groups. The book starts with modern integral geometry for double fibrations and treats several examples in detail. After discussing the theory of Radon transforms and Fourier transforms on symmetric spaces, inversion formulas, and range theorems, Helgason examines applications to invariant differential equations on symmetric spaces, existence theorems, and explicit solution formulas, particularly potential theory and wave equations. The canonical multitemporal wave equation on a symmetric space is included. The book concludes with a chapter on eigenspace representations?that is, representations on solution spaces of invariant differential equations. Known for his high-quality expositions, Helgason received the 1988 Steele Prize for his earlier books Differential Geometry, Lie Groups and Symmetric Spaces and Groups and Geometric Analysis. Containing exercises (with solutions) and references to further results, this revised edition would be suitable for advanced graduate courses in modern integral geometry, analysis on Lie groups, and representation theory of Lie groups.
Book Synopsis Harmonic Maps Into Homogeneous Spaces by : Malcolm Black
Download or read book Harmonic Maps Into Homogeneous Spaces written by Malcolm Black and published by Routledge. This book was released on 2018-05-04 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harmonic maps and the related theory of minimal surfaces are variational problems of long standing in differential geometry. Many important advances have been made in understanding harmonic maps of Riemann surfaces into symmetric spaces. In particular, ""twistor methods"" construct some, and in certain cases all, such mappings from holomorphic data. These notes develop techniques applicable to more general homogeneous manifolds, in particular a very general twistor result is proved. When applied to flag manifolds, this wider viewpoint allows many of the previously unrelated twistor results for symmetric spaces to be brought into a unified framework. These methods also enable a classification of harmonic maps into full flag manifolds to be established, and new examples are constructed. The techniques used are mostly a blend of the theory of compact Lie groups and complex differential geometry. This book should be of interest to mathematicians with experience in differential geometry and to theoretical physicists.
Book Synopsis Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces by : M. Bachir Bekka
Download or read book Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces written by M. Bachir Bekka and published by Cambridge University Press. This book was released on 2000-05-11 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2000, focuses on developments in the study of geodesic flows on homogenous spaces.
Book Synopsis Groups and Geometric Analysis by : Sigurdur Helgason
Download or read book Groups and Geometric Analysis written by Sigurdur Helgason and published by American Mathematical Society. This book was released on 2022-03-17 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: Group-theoretic methods have taken an increasingly prominent role in analysis. Some of this change has been due to the writings of Sigurdur Helgason. This book is an introduction to such methods on spaces with symmetry given by the action of a Lie group. The introductory chapter is a self-contained account of the analysis on surfaces of constant curvature. Later chapters cover general cases of the Radon transform, spherical functions, invariant operators, compact symmetric spaces and other topics. This book, together with its companion volume, Geometric Analysis on Symmetric Spaces (AMS Mathematical Surveys and Monographs series, vol. 39, 1994), has become the standard text for this approach to geometric analysis. Sigurdur Helgason was awarded the Steele Prize for outstanding mathematical exposition for Groups and Geometric Analysis and Differential Geometry, Lie Groups and Symmetric Spaces.
Book Synopsis Harmonic Analysis of Spherical Functions on Real Reductive Groups by : Ramesh Gangolli
Download or read book Harmonic Analysis of Spherical Functions on Real Reductive Groups written by Ramesh Gangolli and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis on Symmetric spaces, or more generally, on homogeneous spaces of semisimple Lie groups, is a subject that has undergone a vigorous development in recent years, and has become a central part of contemporary mathematics. This is only to be expected, since homogeneous spaces and group representations arise naturally in diverse contexts ranging from Number theory and Geometry to Particle Physics and Polymer Chemistry. Its explosive growth sometimes makes it difficult to realize that it is actually relatively young as mathematical theories go. The early ideas in the subject (as is the case with many others) go back to Elie Cart an and Hermann Weyl who studied the compact symmetric spaces in the 1930's. However its full development did not begin until the 1950's when Gel'fand and Harish Chandra dared to dream of a theory of representations that included all semisimple Lie groups. Harish-Chandra's theory of spherical functions was essentially complete in the late 1950's, and was to prove to be the forerunner of his monumental work on harmonic analysis on reductive groups that has inspired a whole generation of mathematicians. It is the harmonic analysis of spherical functions on symmetric spaces, that is at the focus of this book. The fundamental questions of harmonic analysis on symmetric spaces involve an interplay of the geometric, analytical, and algebraic aspects of these spaces. They have therefore attracted a great deal of attention, and there have been many excellent expositions of the themes that are characteristic of this subject.
Book Synopsis Geometric Quantization in Action by : N.E. Hurt
Download or read book Geometric Quantization in Action written by N.E. Hurt and published by Springer Science & Business Media. This book was released on 1982-12-31 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then, is that they can't see the problem. one day, perhaps you will fmd the final question. G. K. Chesterton, The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geo metry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical progmmming profit from homotopy theory; Lie algebras are relevant to fIltering; and prediction and electrical engineering can use Stein spaces.
Book Synopsis Hardy Inequalities on Homogeneous Groups by : Michael Ruzhansky
Download or read book Hardy Inequalities on Homogeneous Groups written by Michael Ruzhansky and published by Springer. This book was released on 2019-07-02 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hörmander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.
Book Synopsis Harmonic Analysis on Homogeneous Spaces by : Calvin C. Moore
Download or read book Harmonic Analysis on Homogeneous Spaces written by Calvin C. Moore and published by American Mathematical Society(RI). This book was released on 1973 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: