Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Genetics Genomics And Breeding Of Maize
Download Genetics Genomics And Breeding Of Maize full books in PDF, epub, and Kindle. Read online Genetics Genomics And Breeding Of Maize ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Maize Genome by : Jeffrey Bennetzen
Download or read book The Maize Genome written by Jeffrey Bennetzen and published by Springer. This book was released on 2018-11-24 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses advances in our understanding of the structure and function of the maize genome since publication of the original B73 reference genome in 2009, and the progress in translating this knowledge into basic biology and trait improvement. Maize is an extremely important crop, providing a large proportion of the world’s human caloric intake and animal feed, and serving as a model species for basic and applied research. The exceptionally high level of genetic diversity within maize presents opportunities and challenges in all aspects of maize genetics, from sequencing and genotyping to linking genotypes to phenotypes. Topics covered in this timely book range from (i) genome sequencing and genotyping techniques, (ii) genome features such as centromeres and epigenetic regulation, (iii) tools and resources available for trait genomics, to (iv) applications of allele mining and genomics-assisted breeding. This book is a valuable resource for researchers and students interested in maize genetics and genomics.
Book Synopsis Handbook of Maize by : Jeff L. Bennetzen
Download or read book Handbook of Maize written by Jeff L. Bennetzen and published by Springer Science & Business Media. This book was released on 2009-01-16 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maize is one of the world’s highest value crops, with a multibillion dollar annual contribution to agriculture. The great adaptability and high yields available for maize as a food, feed and forage crop have led to its current production on over 140 million hectares worldwide, with acreage continuing to grow at the expense of other crops. In terms of tons of cereal grain produced worldwide, maize has been number one for many years. Moreover, maize is expanding its contribution to non-food uses, including as a major source of ethanol as a fuel additive or fuel alternative in the US. In addition, maize has been at the center of the transgenic plant controversy, serving as the first food crop with released transgenic varieties. By 2008, maize will have its genome sequence released, providing the sequence of the first average-size plant genome (the four plant genomes that are now sequenced come from unusually tiny genomes) and of the most complex genome sequenced from any organism. Among plant science researchers, maize has the second largest and most productive research community, trailing only the Arabidopsis community in scale and significance. At the applied research and commercial improvement levels, maize has no peers in agriculture, and consists of thousands of contributors worthwhile. A comprehensive book on the biology of maize has not been published. The "Handbook of Maize: the Genetics and Genomics" center on the past, present and future of maize as a model for plant science research and crop improvement. The books include brief, focused chapters from the foremost maize experts and feature a succinct collection of informative images representing the maize germplasm collection.
Book Synopsis Quantitative Genetics in Maize Breeding by : Arnel R. Hallauer
Download or read book Quantitative Genetics in Maize Breeding written by Arnel R. Hallauer and published by Springer Science & Business Media. This book was released on 2010-09-28 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm
Book Synopsis Genomics-Assisted Crop Improvement by : Rajeev K. Varshney
Download or read book Genomics-Assisted Crop Improvement written by Rajeev K. Varshney and published by Springer Science & Business Media. This book was released on 2007-12-13 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: This superb volume provides a critical assessment of genomics tools and approaches for crop breeding. Volume 1 presents the status and availability of genomic resources and platforms, and also devises strategies and approaches for effectively exploiting genomics research. Volume 2 goes into detail on a number of case studies of several important crop and plant species that summarize both the achievements and limitations of genomics research for crop improvement.
Book Synopsis Genetics, Genomics and Breeding of Maize by : Ramakrishna Wusirika
Download or read book Genetics, Genomics and Breeding of Maize written by Ramakrishna Wusirika and published by CRC Press. This book was released on 2014-08-05 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sequencing of the maize genome has opened up new opportunities in maize breeding, genetics and genomics research. This book highlights modern trends in development of hybrids, analysis of genetic diversity, molecular breeding, comparative and functional genomics, epigenomicsand proteomics in maize. The use of maize in biofuels, phytoremediation and pharmaceuticals is also highlighted. Current research trends, future research directions and challenges are discussed by a panel of experts from all over the world.
Book Synopsis Quantitative Genetics, Genomics and Plant Breeding, 2nd Edition by : Manjit S. Kang
Download or read book Quantitative Genetics, Genomics and Plant Breeding, 2nd Edition written by Manjit S. Kang and published by CABI. This book was released on 2020-04-01 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents state-of-the-art, authoritative chapters on contemporary issues in the broad areas of quantitative genetics, genomics and plant breeding. Section 1 (Chapters 2 to 12) emphasizes the application of genomics, and genome and epigenome editing techniques, in plant breeding; bioinformatics; quantitative trait loci mapping; and the latest approaches of examining and exploiting genotype-environment interactions. Section 2 (Chapters 13 to 20) represents the intersection of breeding, genetics and genomics. This section describes the use of cutting-edge molecular breeding and quantitative genetics techniques in wheat, rice, maize, root and tuber crops and pearl millet. Overall, the book focuses on using genomic information to help evaluate traits that can combat biotic/abiotic stresses, genome-wide association mapping, high-throughput genotyping/phenotyping, biofortification, use of big data, orphan crops, and gene editing techniques. The examples featured are taken from across crop science research and cover a wide geographical base.
Book Synopsis Genetics, Genomics and Breeding of Cucurbits by : Yi-Hong Wang
Download or read book Genetics, Genomics and Breeding of Cucurbits written by Yi-Hong Wang and published by CRC Press. This book was released on 2011-11-11 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last two decades has been the most exciting period in cucurbit genetic, genomic, and breeding research especially for cucumber, melon, and watermelon. In addition, cucumber became the first cucurbit to be sequenced, after other field crops such as rice, sorghum, soybean, and maize. In thirteen chapters by 34 internationally renowned scientists,
Book Synopsis Genetics, Genomics and Breeding of Sorghum by : Yi-Hong Wang
Download or read book Genetics, Genomics and Breeding of Sorghum written by Yi-Hong Wang and published by CRC Press. This book was released on 2014-07-08 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sorghum is one of the hardiest crop plants in modern agriculture and also one of the most versatile. Its seeds provide calorie for food and feed, stalks for building and industrial materials and its juice for syrup. This book provides an in-depth review of the cutting-edge knowledge in sorghum genetics and its applications in sorghum breeding. Each
Book Synopsis Genetics, Genomics and Breeding of Potato by : James M. Bradeen
Download or read book Genetics, Genomics and Breeding of Potato written by James M. Bradeen and published by CRC Press. This book was released on 2016-04-19 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, world leaders in potato research review historical and contemporary discoveries resulting in a range of advances. Topics include nutritional quality, yield, disease and insect resistance, processing, plant growth and development, and other aspects. The book also examines research yielding significant molecular resources that facilit
Book Synopsis Genetics, Genomics and Breeding of Maize by : Ramakrishna Wusirika
Download or read book Genetics, Genomics and Breeding of Maize written by Ramakrishna Wusirika and published by CRC Press. This book was released on 2014-08-05 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sequencing of the maize genome has opened up new opportunities in maize breeding, genetics and genomics research. This book highlights modern trends in development of hybrids, analysis of genetic diversity, molecular breeding, comparative and functional genomics, epigenomicsand proteomics in maize. The use of maize in biofuels, phytoremediation and
Download or read book Heterosis written by R. Frankel and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: When trying to solicit authors for this book it became apparent that the causal factors for heterosis at the physiological and biochemical level are today almost as obscure as they were 30 years ago. Though biometrical-genetical analyses point to dispersion of complementary genes - not overdominance - as the major cause of the phenomenon, plant breeders' experience still suggests a cautious, pragmatic approach to the dominance-overdominance controversy in breeding hybrid cultivars. Thus we are faced with a striking discordance between our limited comprehension of the causal factors and mechanism of heter osis on the one hand, and the extensive agricultural practice of utiliza tion of hybrid vigor on the other. Such utilization is the result of the economic value of hybrid combinations displaying superior yields and qualities as well as stability of performance, of benefits derived in breeding programs, and of the enhanced varietal protection of proprietary rights. No comprehensive and critical analysis of the phenomenon of heterosis in economic plants has been published for the last three decades since the now classical book Heterosis, edited by J . W. Gowen (Iowa State College Press, Ames, Iowa, 1952). The present book attempts to fill the gap and to assess the status of our present knowl edge of the concept, the basis, the extent, and the application of heterosis in economic plants.
Book Synopsis Genetics, Genomics, and Breeding of Tomato by : Barbara E. Liedl
Download or read book Genetics, Genomics, and Breeding of Tomato written by Barbara E. Liedl and published by CRC Press. This book was released on 2013-01-17 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume covers the advances in the study of tomato diversity and taxonomy. It examines the mapping of simple and complex traits, classical genetics and breeding, association studies, molecular breeding, positional cloning, and structural and comparative genomics. The contributors also discuss transcriptomics, proteomics, metabolomics, and bioinformatics. The information in this book will be useful to researchers working on other Solanaceaous crops as well as those interested in using the tomato as a model crop species.
Book Synopsis Plant Breeding: Past, Present and Future by : John E. Bradshaw
Download or read book Plant Breeding: Past, Present and Future written by John E. Bradshaw and published by Springer. This book was released on 2016-03-08 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to help plant breeders by reviewing past achievements, currently successful practices, and emerging methods and techniques. Theoretical considerations are also presented to strike the right balance between being as simple as possible but as complex as necessary. The United Nations predicts that the global human population will continue rising to 9.0 billion by 2050. World food production will need to increase between 70-100 per cent in just 40 years. First generation bio-fuels are also using crops and cropland to produce energy rather than food. In addition, land area used for agriculture may remain static or even decrease as a result of degradation and climate change, despite more land being theoretically available, unless crops can be bred which tolerate associated abiotic stresses. Lastly, it is unlikely that steps can be taken to mitigate all of the climate change predicted to occur by 2050, and beyond, and hence adaptation of farming systems and crop production will be required to reduce predicted negative effects on yields that will occur without crop adaptation. Substantial progress will therefore be required in bridging the yield gap between what is currently achieved per unit of land and what should be possible in future, with the best farming methods and best storage and transportation of food, given the availability of suitably adapted cultivars, including adaptation to climate change. My book is divided into four parts: Part I is an historical introduction; Part II deals with the origin of genetic variation by mutation and recombination of DNA; Part III explains how the mating system of a crop species determines the genetic structure of its landraces; Part IV considers the three complementary options for future progress: use of sexual reproduction in further conventional breeding, base broadening and introgression; mutation breeding; and genetically modified crops.
Book Synopsis Molecular Plant Breeding by : Yunbi Xu
Download or read book Molecular Plant Breeding written by Yunbi Xu and published by CABI. This book was released on 2010 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in plant genomics and molecular biology have revolutionized our understanding of plant genetics, providing new opportunities for more efficient and controllable plant breeding. Successful techniques require a solid understanding of the underlying molecular biology as well as experience in applied plant breeding. Bridging the gap between developments in biotechnology and its applications in plant improvement, Molecular Plant Breeding provides an integrative overview of issues from basic theories to their applications to crop improvement including molecular marker technology, gene mapping, genetic transformation, quantitative genetics, and breeding methodology.
Book Synopsis Genetics, Genomics and Breeding of Peanuts by : Nalini Mallikarjuna
Download or read book Genetics, Genomics and Breeding of Peanuts written by Nalini Mallikarjuna and published by CRC Press. This book was released on 2014-05-15 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Peanut, an amphidiploid, is an important food and oil crop and has an interesting evolutionary history. This book provides a glimpse of the advances in genetic resources and genomics research of peanut made during the last decade. It contains an overview of germplasm, advances in genetic and genomic resources, genetic and trait mapping, proteomic a
Book Synopsis The Maize Handbook by : Michael Freeling
Download or read book The Maize Handbook written by Michael Freeling and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Maize Handbook represents the collective efforts of the maize research community to enumerate the key steps of standard procedures and to disseminate these protocols for the common good. Although the material in this volume is drawn from experience with maize, many of the procedures, protocols, and descriptions are applicable to other higher plants, particularly to other grasses. The power and resolution of experiments with maize depend on the wide range of specialized genetic techniques and marked stocks; these materials are available today as the culmination of nearly 100 years of genetic research. A major goal of this volume is to introduce this genetical legacy and to highlight current stock construction programs that will soon benefit our work, e. g. high-density RFLP maps, deletion stocks, etc. Both stock construction and maintenance are relatively straightforward in maize as a result of the ease of crossing and the longevity of stored seeds. Crossing is facilitated by the separate staminate (tassel) and pistillate (ear) flowers, a feature almost unique to maize. On the other hand, many of the genetic methodologies utilized with maize, including the precision of record keeping, can be adapted to other plants. Facile communication and a spirit of co-operation have characterized the maize genetics community since its earliest days. Starting in the 1930s, institutions such as annual Maize Genetics Cooperation Newsletter, the Maize Genetics Stock Center, and the annual maize genetics meeting provide continuity to the field.
Book Synopsis Genetic and Genomic Resources for Grain Cereals Improvement by : Mohar Singh
Download or read book Genetic and Genomic Resources for Grain Cereals Improvement written by Mohar Singh and published by Academic Press. This book was released on 2015-11-10 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic and Genomic Resources For Cereals Improvement is the first book to bring together the latest available genetic resources and genomics to facilitate the identification of specific germplasm, trait mapping, and allele mining that are needed to more effectively develop biotic and abiotic-stress-resistant grains. As grain cereals, including rice, wheat, maize, barley, sorghum, and millets constitute the bulk of global diets, both of vegetarian and non-vegetarian, there is a greater need for further genetic improvement, breeding, and plant genetic resources to secure the future food supply. This book is an invaluable resource for researchers, crop biologists, and students working with crop development and the changes in environmental climate that have had significant impact on crop production. It includes the latest information on tactics that ensure that environmentally robust genes and crops resilient to climate change are identified and preserved. - Provides a single-volume resource on the global research work on grain cereals genetics and genomics - Presents information for effectively managing and utilizing the genetic resources of this core food supply source - Includes coverage of rice, wheat, maize, barley, sorghum, and pearl, finger and foxtail millets