Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Functional Analytic Techniques For Diffusion Processes
Download Functional Analytic Techniques For Diffusion Processes full books in PDF, epub, and Kindle. Read online Functional Analytic Techniques For Diffusion Processes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Functional Analytic Techniques for Diffusion Processes by : Kazuaki Taira
Download or read book Functional Analytic Techniques for Diffusion Processes written by Kazuaki Taira and published by Springer Nature. This book was released on 2022-05-28 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an easy-to-read reference providing a link between functional analysis and diffusion processes. More precisely, the book takes readers to a mathematical crossroads of functional analysis (macroscopic approach), partial differential equations (mesoscopic approach), and probability (microscopic approach) via the mathematics needed for the hard parts of diffusion processes. This work brings these three fields of analysis together and provides a profound stochastic insight (microscopic approach) into the study of elliptic boundary value problems. The author does a massive study of diffusion processes from a broad perspective and explains mathematical matters in a more easily readable way than one usually would find. The book is amply illustrated; 14 tables and 141 figures are provided with appropriate captions in such a fashion that readers can easily understand powerful techniques of functional analysis for the study of diffusion processes in probability. The scope of the author’s work has been and continues to be powerful methods of functional analysis for future research of elliptic boundary value problems and Markov processes via semigroups. A broad spectrum of readers can appreciate easily and effectively the stochastic intuition that this book conveys. Furthermore, the book will serve as a sound basis both for researchers and for graduate students in pure and applied mathematics who are interested in a modern version of the classical potential theory and Markov processes. For advanced undergraduates working in functional analysis, partial differential equations, and probability, it provides an effective opening to these three interrelated fields of analysis. Beginning graduate students and mathematicians in the field looking for a coherent overview will find the book to be a helpful beginning. This work will be a major influence in a very broad field of study for a long time.
Book Synopsis Diffusion Processes and Partial Differential Equations by : Kazuaki Taira
Download or read book Diffusion Processes and Partial Differential Equations written by Kazuaki Taira and published by . This book was released on 1988 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a careful and accessible exposition of functional analytic methods in stochastic analysis. It focuses on the relationship between Markov processes and elliptic boundary value problems and explores several recent developments in the theory of partial differential equations which have made further progress in the study of Markov processes possible. This book will have great appeal to both advanced students and researchers as an introduction to three interrelated subjects in analysis (Markov processes, semigroups, and elliptic boundary value problems), providing powerful methods for future research.
Book Synopsis Analysis For Diffusion Processes On Riemannian Manifolds by : Feng-yu Wang
Download or read book Analysis For Diffusion Processes On Riemannian Manifolds written by Feng-yu Wang and published by World Scientific. This book was released on 2013-09-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic analysis on Riemannian manifolds without boundary has been well established. However, the analysis for reflecting diffusion processes and sub-elliptic diffusion processes is far from complete. This book contains recent advances in this direction along with new ideas and efficient arguments, which are crucial for further developments. Many results contained here (for example, the formula of the curvature using derivatives of the semigroup) are new among existing monographs even in the case without boundary.
Book Synopsis Stochastic Processes and Applications by : Grigorios A. Pavliotis
Download or read book Stochastic Processes and Applications written by Grigorios A. Pavliotis and published by Springer. This book was released on 2014-11-19 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
Book Synopsis Real Analysis Methods for Markov Processes by : Kazuaki Taira
Download or read book Real Analysis Methods for Markov Processes written by Kazuaki Taira and published by Springer Nature. This book was released on with total page 749 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Generalized Diffusion Processes by : Nikola_ Ivanovich Portenko
Download or read book Generalized Diffusion Processes written by Nikola_ Ivanovich Portenko and published by American Mathematical Soc.. This book was released on 1990-12-21 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diffusion processes serve as a mathematical model for the physical phenomenon of diffusion. One of the most important problems in the theory of diffusion processes is the development of methods for constructing these processes from a given diffusion matrix and a given drift vector. Focusing on the investigation of this problem, this book is intended for specialists in the theory of random processes and its applications. A generalized diffusion process (that is, a continuous Markov process for which the Kolmogorov local characteristics exist in the generalized sense) can serve as a model for diffusion in a medium moving in a nonregular way. The author constructs generalized diffusion processes under two assumptions: first, that the diffusion matrix is sufficiently regular; and second, that the drift vector is a function integrable to some power, or is a generalized function of the type of the derivative of a measure.
Book Synopsis Positive Harmonic Functions and Diffusion by : Ross G. Pinsky
Download or read book Positive Harmonic Functions and Diffusion written by Ross G. Pinsky and published by Cambridge University Press. This book was released on 1995-01-12 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Professor Pinsky gives a self-contained account of the theory of positive harmonic functions for second order elliptic operators, using an integrated probabilistic and analytic approach. The book begins with a treatment of the construction and basic properties of diffusion processes. This theory then serves as a vehicle for studying positive harmonic funtions. Starting with a rigorous treatment of the spectral theory of elliptic operators with nice coefficients on smooth, bounded domains, the author then develops the theory of the generalized principal eigenvalue, and the related criticality theory for elliptic operators on arbitrary domains. Martin boundary theory is considered, and the Martin boundary is explicitly calculated for several classes of operators. The book provides an array of criteria for determining whether a diffusion process is transient or recurrent. Also introduced are the theory of bounded harmonic functions, and Brownian motion on manifolds of negative curvature. Many results that form the folklore of the subject are here given a rigorous exposition, making this book a useful reference for the specialist, and an excellent guide for the graduate student.
Book Synopsis Inference for Diffusion Processes by : Christiane Fuchs
Download or read book Inference for Diffusion Processes written by Christiane Fuchs and published by Springer Science & Business Media. This book was released on 2013-01-18 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diffusion processes are a promising instrument for realistically modelling the time-continuous evolution of phenomena not only in the natural sciences but also in finance and economics. Their mathematical theory, however, is challenging, and hence diffusion modelling is often carried out incorrectly, and the according statistical inference is considered almost exclusively by theoreticians. This book explains both topics in an illustrative way which also addresses practitioners. It provides a complete overview of the current state of research and presents important, novel insights. The theory is demonstrated using real data applications.
Book Synopsis Multidimensional Diffusion Processes by : Daniel W. Stroock
Download or read book Multidimensional Diffusion Processes written by Daniel W. Stroock and published by Springer. This book was released on 2007-02-03 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "This book is an excellent presentation of the application of martingale theory to the theory of Markov processes, especially multidimensional diffusions. [...] This monograph can be recommended to graduate students and research workers but also to all interested in Markov processes from a more theoretical point of view." Mathematische Operationsforschung und Statistik
Book Synopsis Entropy Methods for Diffusive Partial Differential Equations by : Ansgar Jüngel
Download or read book Entropy Methods for Diffusive Partial Differential Equations written by Ansgar Jüngel and published by Springer. This book was released on 2016-06-17 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.
Book Synopsis The Mathematics of Diffusion by : John Crank
Download or read book The Mathematics of Diffusion written by John Crank and published by Oxford University Press. This book was released on 1979 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.
Book Synopsis Statistical Inference for Ergodic Diffusion Processes by : Yury A. Kutoyants
Download or read book Statistical Inference for Ergodic Diffusion Processes written by Yury A. Kutoyants and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book in inference for stochastic processes from a statistical, rather than a probabilistic, perspective. It provides a systematic exposition of theoretical results from over ten years of mathematical literature and presents, for the first time in book form, many new techniques and approaches.
Book Synopsis Nonlinear Reaction-Diffusion Processes for Nanocomposites by : Jesús Ildefonso Díaz
Download or read book Nonlinear Reaction-Diffusion Processes for Nanocomposites written by Jesús Ildefonso Díaz and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-06-21 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: The behavior of materials at the nanoscale is a key aspect of modern nanoscience and nanotechnology. This book presents rigorous mathematical techniques showing that some very useful phenomenological properties which can be observed at the nanoscale in many nonlinear reaction-diffusion processes can be simulated and justified mathematically by means of homogenization processes when a certain critical scale is used in the corresponding framework.
Book Synopsis Schrödinger Equations and Diffusion Theory by : M. Nagasawa
Download or read book Schrödinger Equations and Diffusion Theory written by M. Nagasawa and published by Birkhäuser. This book was released on 2012-12-06 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Schrödinger Equations and Diffusion Theory addresses the question "What is the Schrödinger equation?" in terms of diffusion processes, and shows that the Schrödinger equation and diffusion equations in duality are equivalent. In turn, Schrödinger's conjecture of 1931 is solved. The theory of diffusion processes for the Schrödinger equation tell us that we must go further into the theory of systems of (infinitely) many interacting quantum (diffusion) particles. The method of relative entropy and the theory of transformations enable us to construct severely singular diffusion processes which appear to be equivalent to Schrödinger equations. The theory of large deviations and the propagation of chaos of interacting diffusion particles reveal the statistical mechanical nature of the Schrödinger equation, namely, quantum mechanics. The text is practically self-contained and requires only an elementary knowledge of probability theory at the graduate level.
Book Synopsis Analytic Methods in Interdisciplinary Applications by : Vladimir V. Mityushev
Download or read book Analytic Methods in Interdisciplinary Applications written by Vladimir V. Mityushev and published by Springer. This book was released on 2014-11-20 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book includes lectures given by the plenary and key speakers at the 9th International ISAAC Congress held 2013 in Krakow, Poland. The contributions treat recent developments in analysis and surrounding areas, concerning topics from the theory of partial differential equations, function spaces, scattering, probability theory, and others, as well as applications to biomathematics, queueing models, fractured porous media and geomechanics.
Book Synopsis Inverse Problems in Diffusion Processes by : Heinz W. Engl
Download or read book Inverse Problems in Diffusion Processes written by Heinz W. Engl and published by SIAM. This book was released on 1995-01-01 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of expository papers encompasses both the theoretical and physical application side of inverse problems in diffusion processes.
Book Synopsis Analysis and Geometry of Markov Diffusion Operators by : Dominique Bakry
Download or read book Analysis and Geometry of Markov Diffusion Operators written by Dominique Bakry and published by Springer Science & Business Media. This book was released on 2013-11-18 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.