Fourier Analysis and Approximation

Download Fourier Analysis and Approximation PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 9783764305208
Total Pages : 554 pages
Book Rating : 4.3/5 (52 download)

DOWNLOAD NOW!


Book Synopsis Fourier Analysis and Approximation by : Paul Butzer

Download or read book Fourier Analysis and Approximation written by Paul Butzer and published by Birkhäuser. This book was released on 1971-01-01 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the international conference on 'Harmonic Analysis and Integral Transforms', conducted by one of the authors at the Mathematical Research Institute in Oberwolfach (Black Forest) in August 1965, it was felt that there was a real need for a book on Fourier analysis stressing (i) parallel treatment of Fourier series and Fourier trans forms from a transform point of view, (ii) treatment of Fourier transforms in LP(lRn)_ space not only for p = 1 and p = 2, (iii) classical solution of partial differential equations with completely rigorous proofs, (iv) theory of singular integrals of convolu tion type, (v) applications to approximation theory including saturation theory, (vi) multiplier theory, (vii) Hilbert transforms, Riesz fractional integrals, Bessel potentials, (viii) Fourier transform methods on locally compact groups. This study aims to consider these aspects, presenting a systematic treatment of Fourier analysis on the circle as well as on the infinite line, and of those areas of approximation theory which are in some way or other related thereto. A second volume is in preparation which goes beyond the one-dimensional theory presented here to cover the subject for functions of several variables. Approximately a half of this first volume deals with the theories of Fourier series and of Fourier integrals from a transform point of view.

Fourier Analysis and Approximation of Functions

Download Fourier Analysis and Approximation of Functions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9781402023415
Total Pages : 610 pages
Book Rating : 4.0/5 (234 download)

DOWNLOAD NOW!


Book Synopsis Fourier Analysis and Approximation of Functions by : Roald M. Trigub

Download or read book Fourier Analysis and Approximation of Functions written by Roald M. Trigub and published by Springer Science & Business Media. This book was released on 2004-09-07 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Fourier Analysis and Approximation of Functions basics of classical Fourier Analysis are given as well as those of approximation by polynomials, splines and entire functions of exponential type. In Chapter 1 which has an introductory nature, theorems on convergence, in that or another sense, of integral operators are given. In Chapter 2 basic properties of simple and multiple Fourier series are discussed, while in Chapter 3 those of Fourier integrals are studied. The first three chapters as well as partially Chapter 4 and classical Wiener, Bochner, Bernstein, Khintchin, and Beurling theorems in Chapter 6 might be interesting and available to all familiar with fundamentals of integration theory and elements of Complex Analysis and Operator Theory. Applied mathematicians interested in harmonic analysis and/or numerical methods based on ideas of Approximation Theory are among them. In Chapters 6-11 very recent results are sometimes given in certain directions. Many of these results have never appeared as a book or certain consistent part of a book and can be found only in periodics; looking for them in numerous journals might be quite onerous, thus this book may work as a reference source. The methods used in the book are those of classical analysis, Fourier Analysis in finite-dimensional Euclidean space Diophantine Analysis, and random choice.

The Fourier Transform and Its Applications

Download The Fourier Transform and Its Applications PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (22 download)

DOWNLOAD NOW!


Book Synopsis The Fourier Transform and Its Applications by : Ronald Newbold Bracewell

Download or read book The Fourier Transform and Its Applications written by Ronald Newbold Bracewell and published by . This book was released on 1978 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations

Download The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780792351092
Total Pages : 376 pages
Book Rating : 4.3/5 (51 download)

DOWNLOAD NOW!


Book Synopsis The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations by : A.J. Jerri

Download or read book The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations written by A.J. Jerri and published by Springer Science & Business Media. This book was released on 1998-08-31 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book represents the first attempt at a unified picture for the pres ence of the Gibbs (or Gibbs-Wilbraham) phenomenon in applications, its analysis and the different methods of filtering it out. The analysis and filtering cover the familiar Gibbs phenomenon in Fourier series and integral representations of functions with jump discontinuities. In ad dition it will include other representations, such as general orthogonal series expansions, general integral transforms, splines approximation, and continuous as well as discrete wavelet approximations. The mate rial in this book is presented in a manner accessible to upperclassmen and graduate students in science and engineering, as well as researchers who may face the Gibbs phenomenon in the varied applications that in volve the Fourier and the other approximations of functions with jump discontinuities. Those with more advanced backgrounds in analysis will find basic material, results, and motivations from which they can begin to develop deeper and more general results. We must emphasize that the aim of this book (the first on the sUbject): to satisfy such a diverse audience, is quite difficult. In particular, our detailed derivations and their illustrations for an introductory book may very well sound repeti tive to the experts in the field who are expecting a research monograph. To answer the concern of the researchers, we can only hope that this book will prove helpful as a basic reference for their research papers.

Data-Driven Science and Engineering

Download Data-Driven Science and Engineering PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009098489
Total Pages : 615 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton

Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Numerical Fourier Analysis

Download Numerical Fourier Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030043061
Total Pages : 624 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Numerical Fourier Analysis by : Gerlind Plonka

Download or read book Numerical Fourier Analysis written by Gerlind Plonka and published by Springer. This book was released on 2019-02-05 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a unified presentation of Fourier theory and corresponding algorithms emerging from new developments in function approximation using Fourier methods. It starts with a detailed discussion of classical Fourier theory to enable readers to grasp the construction and analysis of advanced fast Fourier algorithms introduced in the second part, such as nonequispaced and sparse FFTs in higher dimensions. Lastly, it contains a selection of numerical applications, including recent research results on nonlinear function approximation by exponential sums. The code of most of the presented algorithms is available in the authors’ public domain software packages. Students and researchers alike benefit from this unified presentation of Fourier theory and corresponding algorithms.

Fourier Methods in Imaging

Download Fourier Methods in Imaging PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119991862
Total Pages : 1005 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Fourier Methods in Imaging by : Roger L. Easton Jr.

Download or read book Fourier Methods in Imaging written by Roger L. Easton Jr. and published by John Wiley & Sons. This book was released on 2010-11-18 with total page 1005 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fourier Methods in Imaging introduces the mathematical tools for modeling linear imaging systems to predict the action of the system or for solving for the input. The chapters are grouped into five sections, the first introduces the imaging “tasks” (direct, inverse, and system analysis), the basic concepts of linear algebra for vectors and functions, including complex-valued vectors, and inner products of vectors and functions. The second section defines "special" functions, mathematical operations, and transformations that are useful for describing imaging systems. Among these are the Fourier transforms of 1-D and 2-D function, and the Hankel and Radon transforms. This section also considers approximations of the Fourier transform. The third and fourth sections examine the discrete Fourier transform and the description of imaging systems as linear "filters", including the inverse, matched, Wiener and Wiener-Helstrom filters. The final section examines applications of linear system models to optical imaging systems, including holography. Provides a unified mathematical description of imaging systems. Develops a consistent mathematical formalism for characterizing imaging systems. Helps the reader develop an intuitive grasp of the most common mathematical methods, useful for describing the action of general linear systems on signals of one or more spatial dimensions. Offers parallel descriptions of continuous and discrete cases. Includes many graphical and pictorial examples to illustrate the concepts. This book helps students develop an understanding of mathematical tools for describing general one- and two-dimensional linear imaging systems, and will also serve as a reference for engineers and scientists

A First Course in Fourier Analysis

Download A First Course in Fourier Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139469037
Total Pages : 39 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Fourier Analysis by : David W. Kammler

Download or read book A First Course in Fourier Analysis written by David W. Kammler and published by Cambridge University Press. This book was released on 2008-01-17 with total page 39 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDEs, probability, diffraction, musical tones, and wavelets. The book contains an unusually complete presentation of the Fourier transform calculus. It uses concepts from calculus to present an elementary theory of generalized functions. FT calculus and generalized functions are then used to study the wave equation, diffusion equation, and diffraction equation. Real-world applications of Fourier analysis are described in the chapter on musical tones. A valuable reference on Fourier analysis for a variety of students and scientific professionals, including mathematicians, physicists, chemists, geologists, electrical engineers, mechanical engineers, and others.

Lectures on Constructive Approximation

Download Lectures on Constructive Approximation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817684034
Total Pages : 336 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Constructive Approximation by : Volker Michel

Download or read book Lectures on Constructive Approximation written by Volker Michel and published by Springer Science & Business Media. This book was released on 2012-12-12 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball focuses on spherical problems as they occur in the geosciences and medical imaging. It comprises the author’s lectures on classical approximation methods based on orthogonal polynomials and selected modern tools such as splines and wavelets. Methods for approximating functions on the real line are treated first, as they provide the foundations for the methods on the sphere and the ball and are useful for the analysis of time-dependent (spherical) problems. The author then examines the transfer of these spherical methods to problems on the ball, such as the modeling of the Earth’s or the brain’s interior. Specific topics covered include: * the advantages and disadvantages of Fourier, spline, and wavelet methods * theory and numerics of orthogonal polynomials on intervals, spheres, and balls * cubic splines and splines based on reproducing kernels * multiresolution analysis using wavelets and scaling functions This textbook is written for students in mathematics, physics, engineering, and the geosciences who have a basic background in analysis and linear algebra. The work may also be suitable as a self-study resource for researchers in the above-mentioned fields.

The Analytical Theory of Heat

Download The Analytical Theory of Heat PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 534 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis The Analytical Theory of Heat by : Jean-Baptiste-Joseph Fourier

Download or read book The Analytical Theory of Heat written by Jean-Baptiste-Joseph Fourier and published by . This book was released on 1878 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Fourier Transforms Using Mathematica

Download Fourier Transforms Using Mathematica PDF Online Free

Author :
Publisher :
ISBN 13 : 9781510638556
Total Pages : pages
Book Rating : 4.6/5 (385 download)

DOWNLOAD NOW!


Book Synopsis Fourier Transforms Using Mathematica by : Joseph W. Goodman

Download or read book Fourier Transforms Using Mathematica written by Joseph W. Goodman and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Fourier Series, Fourier Transform and Their Applications to Mathematical Physics

Download Fourier Series, Fourier Transform and Their Applications to Mathematical Physics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783319879857
Total Pages : 0 pages
Book Rating : 4.8/5 (798 download)

DOWNLOAD NOW!


Book Synopsis Fourier Series, Fourier Transform and Their Applications to Mathematical Physics by : Valery Serov

Download or read book Fourier Series, Fourier Transform and Their Applications to Mathematical Physics written by Valery Serov and published by Springer. This book was released on 2018-08-31 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text serves as an introduction to the modern theory of analysis and differential equations with applications in mathematical physics and engineering sciences. Having outgrown from a series of half-semester courses given at University of Oulu, this book consists of four self-contained parts. The first part, Fourier Series and the Discrete Fourier Transform, is devoted to the classical one-dimensional trigonometric Fourier series with some applications to PDEs and signal processing. The second part, Fourier Transform and Distributions, is concerned with distribution theory of L. Schwartz and its applications to the Schrödinger and magnetic Schrödinger operations. The third part, Operator Theory and Integral Equations, is devoted mostly to the self-adjoint but unbounded operators in Hilbert spaces and their applications to integral equations in such spaces. The fourth and final part, Introduction to Partial Differential Equations, serves as an introduction to modern methods for classical theory of partial differential equations. Complete with nearly 250 exercises throughout, this text is intended for graduate level students and researchers in the mathematical sciences and engineering.

A Guide to Distribution Theory and Fourier Transforms

Download A Guide to Distribution Theory and Fourier Transforms PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789812384300
Total Pages : 238 pages
Book Rating : 4.3/5 (843 download)

DOWNLOAD NOW!


Book Synopsis A Guide to Distribution Theory and Fourier Transforms by : Robert S. Strichartz

Download or read book A Guide to Distribution Theory and Fourier Transforms written by Robert S. Strichartz and published by World Scientific. This book was released on 2003 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.

The DFT

Download The DFT PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898713420
Total Pages : 446 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis The DFT by : William L. Briggs

Download or read book The DFT written by William L. Briggs and published by SIAM. This book was released on 1995-01-01 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores both the practical and theoretical aspects of the Discrete Fourier Transform, one of the most widely used tools in science, engineering, and computational mathematics. Designed to be accessible to an audience with diverse interests and mathematical backgrounds, the book is written in an informal style and is supported by many examples, figures, and problems. Conceived as an "owner's" manual, this comprehensive book covers such topics as the history of the DFT, derivations and properties of the DFT, comprehensive error analysis, issues concerning the implementation of the DFT in one and several dimensions, symmetric DFTs, a sample of DFT applications, and an overview of the FFT.

Fourier Analysis

Download Fourier Analysis PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400831237
Total Pages : 326 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Fourier Analysis by : Elias M. Stein

Download or read book Fourier Analysis written by Elias M. Stein and published by Princeton University Press. This book was released on 2011-02-11 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Contributions to Fourier Analysis. (AM-25)

Download Contributions to Fourier Analysis. (AM-25) PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400881951
Total Pages : 196 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Contributions to Fourier Analysis. (AM-25) by : Antoni Zygmund

Download or read book Contributions to Fourier Analysis. (AM-25) written by Antoni Zygmund and published by Princeton University Press. This book was released on 2016-03-02 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: The description for this book, Contributions to Fourier Analysis. (AM-25), will be forthcoming.

The Sparse Fourier Transform

Download The Sparse Fourier Transform PDF Online Free

Author :
Publisher : Morgan & Claypool
ISBN 13 : 1947487051
Total Pages : 279 pages
Book Rating : 4.9/5 (474 download)

DOWNLOAD NOW!


Book Synopsis The Sparse Fourier Transform by : Haitham Hassanieh

Download or read book The Sparse Fourier Transform written by Haitham Hassanieh and published by Morgan & Claypool. This book was released on 2018-02-27 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fourier transform is one of the most fundamental tools for computing the frequency representation of signals. It plays a central role in signal processing, communications, audio and video compression, medical imaging, genomics, astronomy, as well as many other areas. Because of its widespread use, fast algorithms for computing the Fourier transform can benefit a large number of applications. The fastest algorithm for computing the Fourier transform is the Fast Fourier Transform (FFT), which runs in near-linear time making it an indispensable tool for many applications. However, today, the runtime of the FFT algorithm is no longer fast enough especially for big data problems where each dataset can be few terabytes. Hence, faster algorithms that run in sublinear time, i.e., do not even sample all the data points, have become necessary. This book addresses the above problem by developing the Sparse Fourier Transform algorithms and building practical systems that use these algorithms to solve key problems in six different applications: wireless networks; mobile systems; computer graphics; medical imaging; biochemistry; and digital circuits. This is a revised version of the thesis that won the 2016 ACM Doctoral Dissertation Award.