Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Fourier Analysis Of Time Series
Download Fourier Analysis Of Time Series full books in PDF, epub, and Kindle. Read online Fourier Analysis Of Time Series ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Fourier Analysis of Time Series by : Peter Bloomfield
Download or read book Fourier Analysis of Time Series written by Peter Bloomfield and published by John Wiley & Sons. This book was released on 2004-04-05 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new, revised edition of a yet unrivaled work on frequency domain analysis Long recognized for his unique focus on frequency domain methods for the analysis of time series data as well as for his applied, easy-to-understand approach, Peter Bloomfield brings his well-known 1976 work thoroughly up to date. With a minimum of mathematics and an engaging, highly rewarding style, Bloomfield provides in-depth discussions of harmonic regression, harmonic analysis, complex demodulation, and spectrum analysis. All methods are clearly illustrated using examples of specific data sets, while ample exercises acquaint readers with Fourier analysis and its applications. The Second Edition: * Devotes an entire chapter to complex demodulation * Treats harmonic regression in two separate chapters * Features a more succinct discussion of the fast Fourier transform * Uses S-PLUS commands (replacing FORTRAN) to accommodate programming needs and graphic flexibility * Includes Web addresses for all time series data used in the examples An invaluable reference for statisticians seeking to expand their understanding of frequency domain methods, Fourier Analysis of Time Series, Second Edition also provides easy access to sophisticated statistical tools for scientists and professionals in such areas as atmospheric science, oceanography, climatology, and biology.
Book Synopsis Fourier Analysis and Stochastic Processes by : Pierre Brémaud
Download or read book Fourier Analysis and Stochastic Processes written by Pierre Brémaud and published by Springer. This book was released on 2014-09-16 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is unique as it provides a uniform treatment of the Fourier theories of functions (Fourier transforms and series, z-transforms), finite measures (characteristic functions, convergence in distribution), and stochastic processes (including arma series and point processes). It emphasises the links between these three themes. The chapter on the Fourier theory of point processes and signals structured by point processes is a novel addition to the literature on Fourier analysis of stochastic processes. It also connects the theory with recent lines of research such as biological spike signals and ultrawide-band communications. Although the treatment is mathematically rigorous, the convivial style makes the book accessible to a large audience. In particular, it will be interesting to anyone working in electrical engineering and communications, biology (point process signals) and econometrics (arma models). Each chapter has an exercise section, which makes Fourier Analysis and Stochastic Processes suitable for a graduate course in applied mathematics, as well as for self-study.
Book Synopsis Analyzing Neural Time Series Data by : Mike X Cohen
Download or read book Analyzing Neural Time Series Data written by Mike X Cohen and published by MIT Press. This book was released on 2014-01-17 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists. Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button. The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.
Book Synopsis Handbook of Time Series Analysis, Signal Processing, and Dynamics by : D. S.G. Pollock
Download or read book Handbook of Time Series Analysis, Signal Processing, and Dynamics written by D. S.G. Pollock and published by Elsevier. This book was released on 1999-10-26 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to serve as a graduate text and reference in time series analysis and signal processing, two closely related subjects that are the concern of a wide range of disciplines, such as statistics, electrical engineering, mechanical engineering and physics.The book provides a CD-ROM containing codes in PASCAL and C for the computer procedures printed in the book. It also furnishes a complete program devoted to the statistical analysis of time series, which will be attractive to a wide range of academics working in diverse mathematical disciplines.
Book Synopsis Fundamentals of Clinical Data Science by : Pieter Kubben
Download or read book Fundamentals of Clinical Data Science written by Pieter Kubben and published by Springer. This book was released on 2018-12-21 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
Book Synopsis A Primer on Fourier Analysis for the Geosciences by : Robin Crockett
Download or read book A Primer on Fourier Analysis for the Geosciences written by Robin Crockett and published by Cambridge University Press. This book was released on 2019-02-14 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive introduction to basic Fourier theory, with numerous practical applications from the geosciences and worked examples in R.
Book Synopsis Wavelet Methods for Time Series Analysis by : Donald B. Percival
Download or read book Wavelet Methods for Time Series Analysis written by Donald B. Percival and published by Cambridge University Press. This book was released on 2006-02-27 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to wavelet analysis 'from the ground level and up', and to wavelet-based statistical analysis of time series focuses on practical discrete time techniques, with detailed descriptions of the theory and algorithms needed to understand and implement the discrete wavelet transforms. Numerous examples illustrate the techniques on actual time series. The many embedded exercises - with complete solutions provided in the Appendix - allow readers to use the book for self-guided study. Additional exercises can be used in a classroom setting. A Web site offers access to the time series and wavelets used in the book, as well as information on accessing software in S-Plus and other languages. Students and researchers wishing to use wavelet methods to analyze time series will find this book essential.
Book Synopsis Time Series Data Analysis in Oceanography by : Chunyan Li
Download or read book Time Series Data Analysis in Oceanography written by Chunyan Li and published by Cambridge University Press. This book was released on 2022-05-05 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Textbook for students and researchers in oceanography and Earth science on theory and practice of time series analysis using MATLAB.
Book Synopsis The Spectral Analysis of Time Series by : L. H. Koopmans
Download or read book The Spectral Analysis of Time Series written by L. H. Koopmans and published by Academic Press. This book was released on 2014-05-12 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Spectral Analysis of Time Series describes the techniques and theory of the frequency domain analysis of time series. The book discusses the physical processes and the basic features of models of time series. The central feature of all models is the existence of a spectrum by which the time series is decomposed into a linear combination of sines and cosines. The investigator can used Fourier decompositions or other kinds of spectrals in time series analysis. The text explains the Wiener theory of spectral analysis, the spectral representation for weakly stationary stochastic processes, and the real spectral representation. The book also discusses sampling, aliasing, discrete-time models, linear filters that have general properties with applications to continuous-time processes, and the applications of multivariate spectral models. The text describes finite parameter models, the distribution theory of spectral estimates with applications to statistical inference, as well as sampling properties of spectral estimates, experimental design, and spectral computations. The book is intended either as a textbook or for individual reading for one-semester or two-quarter course for students of time series analysis users. It is also suitable for mathematicians or professors of calculus, statistics, and advanced mathematics.
Book Synopsis Time Series Analysis and Inverse Theory for Geophysicists by : David Gubbins
Download or read book Time Series Analysis and Inverse Theory for Geophysicists written by David Gubbins and published by Cambridge University Press. This book was released on 2004-03-18 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique textbook provides the foundation for understanding and applying techniques commonly used in geophysics to process and interpret modern digital data. The geophysicist's toolkit contains a range of techniques which may be divided into two main groups: processing, which concerns time series analysis and is used to separate the signal of interest from background noise; and inversion, which involves generating some map or physical model from the data. These two groups of techniques are normally taught separately, but are here presented together as parts I and II of the book. Part III describes some real applications and includes case studies in seismology, geomagnetism, and gravity. This textbook gives students and practitioners the theoretical background and practical experience, through case studies, computer examples and exercises, to understand and apply new processing methods to modern geophysical datasets. Solutions to the exercises are available on a website at http://publishing.cambridge.org/resources/0521819652
Book Synopsis Discrete Fourier Analysis by : M. W. Wong
Download or read book Discrete Fourier Analysis written by M. W. Wong and published by Springer Science & Business Media. This book was released on 2011-05-30 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents basic notions and techniques of Fourier analysis in discrete settings. Written in a concise style, it is interlaced with remarks, discussions and motivations from signal analysis. The first part is dedicated to topics related to the Fourier transform, including discrete time-frequency analysis and discrete wavelet analysis. Basic knowledge of linear algebra and calculus is the only prerequisite. The second part is built on Hilbert spaces and Fourier series and culminates in a section on pseudo-differential operators, providing a lucid introduction to this advanced topic in analysis. Some measure theory language is used, although most of this part is accessible to students familiar with an undergraduate course in real analysis. Discrete Fourier Analysis is aimed at advanced undergraduate and graduate students in mathematics and applied mathematics. Enhanced with exercises, it will be an excellent resource for the classroom as well as for self-study.
Book Synopsis Scala: Guide for Data Science Professionals by : Pascal Bugnion
Download or read book Scala: Guide for Data Science Professionals written by Pascal Bugnion and published by Packt Publishing Ltd. This book was released on 2017-02-24 with total page 1101 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scala will be a valuable tool to have on hand during your data science journey for everything from data cleaning to cutting-edge machine learning About This Book Build data science and data engineering solutions with ease An in-depth look at each stage of the data analysis process — from reading and collecting data to distributed analytics Explore a broad variety of data processing, machine learning, and genetic algorithms through diagrams, mathematical formulations, and source code Who This Book Is For This learning path is perfect for those who are comfortable with Scala programming and now want to enter the field of data science. Some knowledge of statistics is expected. What You Will Learn Transfer and filter tabular data to extract features for machine learning Read, clean, transform, and write data to both SQL and NoSQL databases Create Scala web applications that couple with JavaScript libraries such as D3 to create compelling interactive visualizations Load data from HDFS and HIVE with ease Run streaming and graph analytics in Spark for exploratory analysis Bundle and scale up Spark jobs by deploying them into a variety of cluster managers Build dynamic workflows for scientific computing Leverage open source libraries to extract patterns from time series Master probabilistic models for sequential data In Detail Scala is especially good for analyzing large sets of data as the scale of the task doesn't have any significant impact on performance. Scala's powerful functional libraries can interact with databases and build scalable frameworks — resulting in the creation of robust data pipelines. The first module introduces you to Scala libraries to ingest, store, manipulate, process, and visualize data. Using real world examples, you will learn how to design scalable architecture to process and model data — starting from simple concurrency constructs and progressing to actor systems and Apache Spark. After this, you will also learn how to build interactive visualizations with web frameworks. Once you have become familiar with all the tasks involved in data science, you will explore data analytics with Scala in the second module. You'll see how Scala can be used to make sense of data through easy to follow recipes. You will learn about Bokeh bindings for exploratory data analysis and quintessential machine learning with algorithms with Spark ML library. You'll get a sufficient understanding of Spark streaming, machine learning for streaming data, and Spark graphX. Armed with a firm understanding of data analysis, you will be ready to explore the most cutting-edge aspect of data science — machine learning. The final module teaches you the A to Z of machine learning with Scala. You'll explore Scala for dependency injections and implicits, which are used to write machine learning algorithms. You'll also explore machine learning topics such as clustering, dimentionality reduction, Naive Bayes, Regression models, SVMs, neural networks, and more. This learning path combines some of the best that Packt has to offer into one complete, curated package. It includes content from the following Packt products: Scala for Data Science, Pascal Bugnion Scala Data Analysis Cookbook, Arun Manivannan Scala for Machine Learning, Patrick R. Nicolas Style and approach A complete package with all the information necessary to start building useful data engineering and data science solutions straight away. It contains a diverse set of recipes that cover the full spectrum of interesting data analysis tasks and will help you revolutionize your data analysis skills using Scala.
Book Synopsis Foundations of Time-Frequency Analysis by : Karlheinz Gröchenig
Download or read book Foundations of Time-Frequency Analysis written by Karlheinz Gröchenig and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-frequency analysis is a modern branch of harmonic analysis. It com prises all those parts of mathematics and its applications that use the struc ture of translations and modulations (or time-frequency shifts) for the anal ysis of functions and operators. Time-frequency analysis is a form of local Fourier analysis that treats time and frequency simultaneously and sym metrically. My goal is a systematic exposition of the foundations of time-frequency analysis, whence the title of the book. The topics range from the elemen tary theory of the short-time Fourier transform and classical results about the Wigner distribution via the recent theory of Gabor frames to quantita tive methods in time-frequency analysis and the theory of pseudodifferential operators. This book is motivated by applications in signal analysis and quantum mechanics, but it is not about these applications. The main ori entation is toward the detailed mathematical investigation of the rich and elegant structures underlying time-frequency analysis. Time-frequency analysis originates in the early development of quantum mechanics by H. Weyl, E. Wigner, and J. von Neumann around 1930, and in the theoretical foundation of information theory and signal analysis by D.
Book Synopsis Fourier Analysis by : Elias M. Stein
Download or read book Fourier Analysis written by Elias M. Stein and published by Princeton University Press. This book was released on 2011-02-11 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton
Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Book Synopsis Time Series Analysis Univariate and Multivariate Methods by : William W. S. Wei
Download or read book Time Series Analysis Univariate and Multivariate Methods written by William W. S. Wei and published by Pearson. This book was released on 2018-03-14 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.
Download or read book Fourier Analysis written by T. W. Körner and published by Cambridge University Press. This book was released on 2022-06-09 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fourier analysis is a subject that was born in physics but grew up in mathematics. Now it is part of the standard repertoire for mathematicians, physicists and engineers. This diversity of interest is often overlooked, but in this much-loved book, Tom Körner provides a shop window for some of the ideas, techniques and elegant results of Fourier analysis, and for their applications. These range from number theory, numerical analysis, control theory and statistics, to earth science, astronomy and electrical engineering. The prerequisites are few (a reader with knowledge of second- or third-year undergraduate mathematics should have no difficulty following the text), and the style is lively and entertaining. This edition of Körner's 1989 text includes a foreword written by Professor Terence Tao introducing it to a new generation of fans.