An Introduction to Groups, Groupoids and Their Representations

Download An Introduction to Groups, Groupoids and Their Representations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351869566
Total Pages : 279 pages
Book Rating : 4.3/5 (518 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Groups, Groupoids and Their Representations by : Alberto Ibort

Download or read book An Introduction to Groups, Groupoids and Their Representations written by Alberto Ibort and published by CRC Press. This book was released on 2019-10-28 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the theory of groupoids and their representations encompassing the standard theory of groups. Using a categorical language, developed from simple examples, the theory of finite groupoids is shown to knit neatly with that of groups and their structure as well as that of their representations is described. The book comprises numerous examples and applications, including well-known games and puzzles, databases and physics applications. Key concepts have been presented using only basic notions so that it can be used both by students and researchers interested in the subject. Category theory is the natural language that is being used to develop the theory of groupoids. However, categorical presentations of mathematical subjects tend to become highly abstract very fast and out of reach of many potential users. To avoid this, foundations of the theory, starting with simple examples, have been developed and used to study the structure of finite groups and groupoids. The appropriate language and notions from category theory have been developed for students of mathematics and theoretical physics. The book presents the theory on the same level as the ordinary and elementary theories of finite groups and their representations, and provides a unified picture of the same. The structure of the algebra of finite groupoids is analysed, along with the classical theory of characters of their representations. Unnecessary complications in the formal presentation of the subject are avoided. The book offers an introduction to the language of category theory in the concrete setting of finite sets. It also shows how this perspective provides a common ground for various problems and applications, ranging from combinatorics, the topology of graphs, structure of databases and quantum physics.

Foundations of the Theory of Groupoids and Groups

Download Foundations of the Theory of Groupoids and Groups PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 :
Total Pages : 226 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Foundations of the Theory of Groupoids and Groups by : Otakar Borůvka

Download or read book Foundations of the Theory of Groupoids and Groups written by Otakar Borůvka and published by John Wiley & Sons. This book was released on 1976 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Topology and Groupoids

Download Topology and Groupoids PDF Online Free

Author :
Publisher : Booksurge Llc
ISBN 13 : 9781419627224
Total Pages : 512 pages
Book Rating : 4.6/5 (272 download)

DOWNLOAD NOW!


Book Synopsis Topology and Groupoids by : Ronald Brown

Download or read book Topology and Groupoids written by Ronald Brown and published by Booksurge Llc. This book was released on 2006 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation. The book is intended as a text for a two-semester course in topology and algebraic topology at the advanced undergraduate orbeginning graduate level. There are over 500 exercises, 114 figures, numerous diagrams. The general direction of the book is towardhomotopy theory with a geometric point of view. This book would providea more than adequate background for a standard algebraic topology coursethat begins with homology theory. For more information seewww.bangor.ac.uk/r.brown/topgpds.htmlThis version dated April 19, 2006, has a number of corrections made.

Encyclopaedia of Mathematics

Download Encyclopaedia of Mathematics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9781556080036
Total Pages : 540 pages
Book Rating : 4.0/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Encyclopaedia of Mathematics by : Michiel Hazewinkel

Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 1988 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: V.1. A-B v.2. C v.3. D-Feynman Measure. v.4. Fibonaccimethod H v.5. Lituus v.6. Lobachevskii Criterion (for Convergence)-Optical Sigman-Algebra. v.7. Orbi t-Rayleigh Equation. v.8. Reaction-Diffusion Equation-Stirling Interpolation Fo rmula. v.9. Stochastic Approximation-Zygmund Class of Functions. v.10. Subject Index-Author Index.

An Introduction to Groups, Groupoids and Their Representations

Download An Introduction to Groups, Groupoids and Their Representations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351869574
Total Pages : 362 pages
Book Rating : 4.3/5 (518 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Groups, Groupoids and Their Representations by : Alberto Ibort

Download or read book An Introduction to Groups, Groupoids and Their Representations written by Alberto Ibort and published by CRC Press. This book was released on 2019-10-28 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the theory of groupoids and their representations encompassing the standard theory of groups. Using a categorical language, developed from simple examples, the theory of finite groupoids is shown to knit neatly with that of groups and their structure as well as that of their representations is described. The book comprises numerous examples and applications, including well-known games and puzzles, databases and physics applications. Key concepts have been presented using only basic notions so that it can be used both by students and researchers interested in the subject. Category theory is the natural language that is being used to develop the theory of groupoids. However, categorical presentations of mathematical subjects tend to become highly abstract very fast and out of reach of many potential users. To avoid this, foundations of the theory, starting with simple examples, have been developed and used to study the structure of finite groups and groupoids. The appropriate language and notions from category theory have been developed for students of mathematics and theoretical physics. The book presents the theory on the same level as the ordinary and elementary theories of finite groups and their representations, and provides a unified picture of the same. The structure of the algebra of finite groupoids is analysed, along with the classical theory of characters of their representations. Unnecessary complications in the formal presentation of the subject are avoided. The book offers an introduction to the language of category theory in the concrete setting of finite sets. It also shows how this perspective provides a common ground for various problems and applications, ranging from combinatorics, the topology of graphs, structure of databases and quantum physics.

Homotopy Type Theory: Univalent Foundations of Mathematics

Download Homotopy Type Theory: Univalent Foundations of Mathematics PDF Online Free

Author :
Publisher : Univalent Foundations
ISBN 13 :
Total Pages : 484 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Homotopy Type Theory: Univalent Foundations of Mathematics by :

Download or read book Homotopy Type Theory: Univalent Foundations of Mathematics written by and published by Univalent Foundations. This book was released on with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Foundations of Differentiable Manifolds and Lie Groups

Download Foundations of Differentiable Manifolds and Lie Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475717997
Total Pages : 283 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Differentiable Manifolds and Lie Groups by : Frank W. Warner

Download or read book Foundations of Differentiable Manifolds and Lie Groups written by Frank W. Warner and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.

Nonabelian Algebraic Topology

Download Nonabelian Algebraic Topology PDF Online Free

Author :
Publisher : JP Medical Ltd
ISBN 13 : 9783037190838
Total Pages : 714 pages
Book Rating : 4.1/5 (98 download)

DOWNLOAD NOW!


Book Synopsis Nonabelian Algebraic Topology by : Ronald Brown

Download or read book Nonabelian Algebraic Topology written by Ronald Brown and published by JP Medical Ltd. This book was released on 2011 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of this book is that the use of filtered spaces rather than just topological spaces allows the development of basic algebraic topology in terms of higher homotopy groupoids; these algebraic structures better reflect the geometry of subdivision and composition than those commonly in use. Exploration of these uses of higher dimensional versions of groupoids has been largely the work of the first two authors since the mid 1960s. The structure of the book is intended to make it useful to a wide class of students and researchers for learning and evaluating these methods, primarily in algebraic topology but also in higher category theory and its applications in analogous areas of mathematics, physics, and computer science. Part I explains the intuitions and theory in dimensions 1 and 2, with many figures and diagrams, and a detailed account of the theory of crossed modules. Part II develops the applications of crossed complexes. The engine driving these applications is the work of Part III on cubical $\omega$-groupoids, their relations to crossed complexes, and their homotopically defined examples for filtered spaces. Part III also includes a chapter suggesting further directions and problems, and three appendices give accounts of some relevant aspects of category theory. Endnotes for each chapter give further history and references.

From Categories to Homotopy Theory

Download From Categories to Homotopy Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108847625
Total Pages : 402 pages
Book Rating : 4.1/5 (88 download)

DOWNLOAD NOW!


Book Synopsis From Categories to Homotopy Theory by : Birgit Richter

Download or read book From Categories to Homotopy Theory written by Birgit Richter and published by Cambridge University Press. This book was released on 2020-04-16 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Category theory provides structure for the mathematical world and is seen everywhere in modern mathematics. With this book, the author bridges the gap between pure category theory and its numerous applications in homotopy theory, providing the necessary background information to make the subject accessible to graduate students or researchers with a background in algebraic topology and algebra. The reader is first introduced to category theory, starting with basic definitions and concepts before progressing to more advanced themes. Concrete examples and exercises illustrate the topics, ranging from colimits to constructions such as the Day convolution product. Part II covers important applications of category theory, giving a thorough introduction to simplicial objects including an account of quasi-categories and Segal sets. Diagram categories play a central role throughout the book, giving rise to models of iterated loop spaces, and feature prominently in functor homology and homology of small categories.

Algebraic Homotopy

Download Algebraic Homotopy PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521333768
Total Pages : 490 pages
Book Rating : 4.5/5 (213 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Homotopy by : Hans J. Baues

Download or read book Algebraic Homotopy written by Hans J. Baues and published by Cambridge University Press. This book was released on 1989-02-16 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a general outlook on homotopy theory; fundamental concepts, such as homotopy groups and spectral sequences, are developed from a few axioms and are thus available in a broad variety of contexts. Many examples and applications in topology and algebra are discussed, including an introduction to rational homotopy theory in terms of both differential Lie algebras and De Rham algebras. The author describes powerful tools for homotopy classification problems, particularly for the classification of homotopy types and for the computation of the group homotopy equivalences. Applications and examples of such computations are given, including when the fundamental group is non-trivial. Moreover, the deep connection between the homotopy classification problems and the cohomology theory of small categories is demonstrated. The prerequisites of the book are few: elementary topology and algebra. Consequently, this account will be valuable for non-specialists and experts alike. It is an important supplement to the standard presentations of algebraic topology, homotopy theory, category theory and homological algebra.

Introduction to Foliations and Lie Groupoids

Download Introduction to Foliations and Lie Groupoids PDF Online Free

Author :
Publisher :
ISBN 13 : 9780511071539
Total Pages : 173 pages
Book Rating : 4.0/5 (715 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Foliations and Lie Groupoids by : Ieke Moerdijk

Download or read book Introduction to Foliations and Lie Groupoids written by Ieke Moerdijk and published by . This book was released on 2003 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a quick introduction to the theory of foliations and Lie groupoids. It is based on the authors' extensive teaching experience and contains numerous examples and exercises making it ideal either for independent study or as the basis of a graduate course.

Foundations of Algebraic Topology

Download Foundations of Algebraic Topology PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400877490
Total Pages : 345 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Algebraic Topology by : Samuel Eilenberg

Download or read book Foundations of Algebraic Topology written by Samuel Eilenberg and published by Princeton University Press. This book was released on 2015-12-08 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need for an axiomatic treatment of homology and cohomology theory has long been felt by topologists. Professors Eilenberg and Steenrod present here for the first time an axiomatization of the complete transition from topology to algebra. Originally published in 1952. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Notes on Categories and Groupoids

Download Notes on Categories and Groupoids PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 190 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Notes on Categories and Groupoids by : Philip J. Higgins

Download or read book Notes on Categories and Groupoids written by Philip J. Higgins and published by . This book was released on 1971 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Algebraic Groups

Download Algebraic Groups PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107167485
Total Pages : 665 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Groups by : J. S. Milne

Download or read book Algebraic Groups written by J. S. Milne and published by Cambridge University Press. This book was released on 2017-09-21 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive introduction to the theory of algebraic group schemes over fields, based on modern algebraic geometry, with few prerequisites.

Nilpotence and Periodicity in Stable Homotopy Theory

Download Nilpotence and Periodicity in Stable Homotopy Theory PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691025728
Total Pages : 228 pages
Book Rating : 4.0/5 (257 download)

DOWNLOAD NOW!


Book Synopsis Nilpotence and Periodicity in Stable Homotopy Theory by : Douglas C. Ravenel

Download or read book Nilpotence and Periodicity in Stable Homotopy Theory written by Douglas C. Ravenel and published by Princeton University Press. This book was released on 1992-11-08 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.

The Algebraic Theory of Semigroups, Volume II

Download The Algebraic Theory of Semigroups, Volume II PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821802720
Total Pages : 370 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis The Algebraic Theory of Semigroups, Volume II by : Alfred Hoblitzelle Clifford

Download or read book The Algebraic Theory of Semigroups, Volume II written by Alfred Hoblitzelle Clifford and published by American Mathematical Soc.. This book was released on 1961 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Categories for the Working Philosopher

Download Categories for the Working Philosopher PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 019874899X
Total Pages : 486 pages
Book Rating : 4.1/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Categories for the Working Philosopher by : Elaine M. Landry

Download or read book Categories for the Working Philosopher written by Elaine M. Landry and published by Oxford University Press. This book was released on 2017 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first volume on category theory for a broad philosophical readership. It is designed to show the interest and significance of category theory for a range of philosophical interests: mathematics, proof theory, computation, cognition, scientific modelling, physics, ontology, the structure of the world. Each chapter is written by either a category-theorist or a philosopher working in one of the represented areas, in an accessible waythat builds on the concepts that are already familiar to philosophers working in these areas.