Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Focus Of The Issue Spiking Neural Networks
Download Focus Of The Issue Spiking Neural Networks full books in PDF, epub, and Kindle. Read online Focus Of The Issue Spiking Neural Networks ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Principles of Computational Modelling in Neuroscience by : David Sterratt
Download or read book Principles of Computational Modelling in Neuroscience written by David Sterratt and published by Cambridge University Press. This book was released on 2023-10-05 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to use computational modelling techniques to understand the nervous system at all levels, from ion channels to networks.
Book Synopsis Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence by : Nikola K. Kasabov
Download or read book Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence written by Nikola K. Kasabov and published by Springer. This book was released on 2018-08-29 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spiking neural networks (SNN) are biologically inspired computational models that represent and process information internally as trains of spikes. This monograph book presents the classical theory and applications of SNN, including original author’s contribution to the area. The book introduces for the first time not only deep learning and deep knowledge representation in the human brain and in brain-inspired SNN, but takes that further to develop new types of AI systems, called in the book brain-inspired AI (BI-AI). BI-AI systems are illustrated on: cognitive brain data, including EEG, fMRI and DTI; audio-visual data; brain-computer interfaces; personalized modelling in bio-neuroinformatics; multisensory streaming data modelling in finance, environment and ecology; data compression; neuromorphic hardware implementation. Future directions, such as the integration of multiple modalities, such as quantum-, molecular- and brain information processing, is presented in the last chapter. The book is a research book for postgraduate students, researchers and practitioners across wider areas, including computer and information sciences, engineering, applied mathematics, bio- and neurosciences.
Book Synopsis Spiking Neuron Models by : Wulfram Gerstner
Download or read book Spiking Neuron Models written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2002-08-15 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neurons in the brain communicate by short electrical pulses, the so-called action potentials or spikes. How can we understand the process of spike generation? How can we understand information transmission by neurons? What happens if thousands of neurons are coupled together in a seemingly random network? How does the network connectivity determine the activity patterns? And, vice versa, how does the spike activity influence the connectivity pattern? These questions are addressed in this 2002 introduction to spiking neurons aimed at those taking courses in computational neuroscience, theoretical biology, biophysics, or neural networks. The approach will suit students of physics, mathematics, or computer science; it will also be useful for biologists who are interested in mathematical modelling. The text is enhanced by many worked examples and illustrations. There are no mathematical prerequisites beyond what the audience would meet as undergraduates: more advanced techniques are introduced in an elementary, concrete fashion when needed.
Book Synopsis Handbook of Natural Computing by : Grzegorz Rozenberg
Download or read book Handbook of Natural Computing written by Grzegorz Rozenberg and published by Springer. This book was released on 2012-07-09 with total page 2052 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, i.e., it investigates models and computational techniques inspired by nature and also it investigates phenomena taking place in nature in terms of information processing. Examples of the first strand of research covered by the handbook include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata inspired by intercellular communication; swarm intelligence inspired by the behavior of groups of organisms; artificial immune systems inspired by the natural immune system; artificial life systems inspired by the properties of natural life in general; membrane computing inspired by the compartmentalized ways in which cells process information; and amorphous computing inspired by morphogenesis. Other examples of natural-computing paradigms are molecular computing and quantum computing, where the goal is to replace traditional electronic hardware, e.g., by bioware in molecular computing. In molecular computing, data are encoded as biomolecules and then molecular biology tools are used to transform the data, thus performing computations. In quantum computing, one exploits quantum-mechanical phenomena to perform computations and secure communications more efficiently than classical physics and, hence, traditional hardware allows. The second strand of research covered by the handbook, computation taking place in nature, is represented by investigations into, among others, the computational nature of self-assembly, which lies at the core of nanoscience, the computational nature of developmental processes, the computational nature of biochemical reactions, the computational nature of bacterial communication, the computational nature of brain processes, and the systems biology approach to bionetworks where cellular processes are treated in terms of communication and interaction, and, hence, in terms of computation. We are now witnessing exciting interaction between computer science and the natural sciences. While the natural sciences are rapidly absorbing notions, techniques and methodologies intrinsic to information processing, computer science is adapting and extending its traditional notion of computation, and computational techniques, to account for computation taking place in nature around us. Natural Computing is an important catalyst for this two-way interaction, and this handbook is a major record of this important development.
Book Synopsis Principles of Neural Information Theory by : James V Stone
Download or read book Principles of Neural Information Theory written by James V Stone and published by . This book was released on 2018-05-15 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this richly illustrated book, it is shown how Shannon's mathematical theory of information defines absolute limits on neural efficiency; limits which ultimately determine the neuroanatomical microstructure of the eye and brain. Written in an informal style this is an ideal introduction to cutting-edge research in neural information theory.
Book Synopsis Event-Based Neuromorphic Systems by : Shih-Chii Liu
Download or read book Event-Based Neuromorphic Systems written by Shih-Chii Liu and published by John Wiley & Sons. This book was released on 2015-02-16 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuromorphic electronic engineering takes its inspiration from the functioning of nervous systems to build more power efficient electronic sensors and processors. Event-based neuromorphic systems are inspired by the brain's efficient data-driven communication design, which is key to its quick responses and remarkable capabilities. This cross-disciplinary text establishes how circuit building blocks are combined in architectures to construct complete systems. These include vision and auditory sensors as well as neuronal processing and learning circuits that implement models of nervous systems. Techniques for building multi-chip scalable systems are considered throughout the book, including methods for dealing with transistor mismatch, extensive discussions of communication and interfacing, and making systems that operate in the real world. The book also provides historical context that helps relate the architectures and circuits to each other and that guides readers to the extensive literature. Chapters are written by founding experts and have been extensively edited for overall coherence. This pioneering text is an indispensable resource for practicing neuromorphic electronic engineers, advanced electrical engineering and computer science students and researchers interested in neuromorphic systems. Key features: Summarises the latest design approaches, applications, and future challenges in the field of neuromorphic engineering. Presents examples of practical applications of neuromorphic design principles. Covers address-event communication, retinas, cochleas, locomotion, learning theory, neurons, synapses, floating gate circuits, hardware and software infrastructure, algorithms, and future challenges.
Book Synopsis Neuronal Dynamics by : Wulfram Gerstner
Download or read book Neuronal Dynamics written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2014-07-24 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
Book Synopsis SpiNNaker - A Spiking Neural Network Architecture by : Steve Furber
Download or read book SpiNNaker - A Spiking Neural Network Architecture written by Steve Furber and published by NowOpen. This book was released on 2020-03-15 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This books tells the story of the origins of the world's largest neuromorphic computing platform, its development and its deployment, and the immense software development effort that has gone into making it openly available and accessible to researchers and students the world over
Book Synopsis Pulsed Neural Networks by : Wolfgang Maass
Download or read book Pulsed Neural Networks written by Wolfgang Maass and published by MIT Press. This book was released on 2001-01-26 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most practical applications of artificial neural networks are based on a computational model involving the propagation of continuous variables from one processing unit to the next. In recent years, data from neurobiological experiments have made it increasingly clear that biological neural networks, which communicate through pulses, use the timing of the pulses to transmit information and perform computation. This realization has stimulated significant research on pulsed neural networks, including theoretical analyses and model development, neurobiological modeling, and hardware implementation. This book presents the complete spectrum of current research in pulsed neural networks and includes the most important work from many of the key scientists in the field. Terrence J. Sejnowski's foreword, "Neural Pulse Coding," presents an overview of the topic. The first half of the book consists of longer tutorial articles spanning neurobiology, theory, algorithms, and hardware. The second half contains a larger number of shorter research chapters that present more advanced concepts. The contributors use consistent notation and terminology throughout the book. Contributors Peter S. Burge, Stephen R. Deiss, Rodney J. Douglas, John G. Elias, Wulfram Gerstner, Alister Hamilton, David Horn, Axel Jahnke, Richard Kempter, Wolfgang Maass, Alessandro Mortara, Alan F. Murray, David P. M. Northmore, Irit Opher, Kostas A. Papathanasiou, Michael Recce, Barry J. P. Rising, Ulrich Roth, Tim Schönauer, Terrence J. Sejnowski, John Shawe-Taylor, Max R. van Daalen, J. Leo van Hemmen, Philippe Venier, Hermann Wagner, Adrian M. Whatley, Anthony M. Zador
Book Synopsis Reproducibility and Rigour in Computational Neuroscience by : Sharon Crook
Download or read book Reproducibility and Rigour in Computational Neuroscience written by Sharon Crook and published by Frontiers Media SA. This book was released on 2020-07-09 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Spiking Neural Network Learning, Benchmarking, Programming and Executing by : Guoqi Li
Download or read book Spiking Neural Network Learning, Benchmarking, Programming and Executing written by Guoqi Li and published by Frontiers Media SA. This book was released on 2020-06-05 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Applications of Pulse-Coupled Neural Networks by : Yide Ma
Download or read book Applications of Pulse-Coupled Neural Networks written by Yide Ma and published by Springer Science & Business Media. This book was released on 2011-09-02 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Applications of Pulse-Coupled Neural Networks" explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields. This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science. Prof. Yide Ma conducts research on intelligent information processing, biomedical image processing, and embedded system development at the School of Information Science and Engineering, Lanzhou University, China.
Book Synopsis Advances in Neural Networks: Computational and Theoretical Issues by : Simone Bassis
Download or read book Advances in Neural Networks: Computational and Theoretical Issues written by Simone Bassis and published by Springer. This book was released on 2015-06-05 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects research works that exploit neural networks and machine learning techniques from a multidisciplinary perspective. Subjects covered include theoretical, methodological and computational topics which are grouped together into chapters devoted to the discussion of novelties and innovations related to the field of Artificial Neural Networks as well as the use of neural networks for applications, pattern recognition, signal processing, and special topics such as the detection and recognition of multimodal emotional expressions and daily cognitive functions, and bio-inspired memristor-based networks. Providing insights into the latest research interest from a pool of international experts coming from different research fields, the volume becomes valuable to all those with any interest in a holistic approach to implement believable, autonomous, adaptive and context-aware Information Communication Technologies.
Book Synopsis Inhibitory Synaptic Plasticity by : Melanie A. Woodin
Download or read book Inhibitory Synaptic Plasticity written by Melanie A. Woodin and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume will explore the most recent findings on cellular mechanisms of inhibitory plasticity and its functional role in shaping neuronal circuits, their rewiring in response to experience, drug addiction and in neuropathology. Inhibitory Synaptic Plasticity will be of particular interest to neuroscientists and neurophysiologists.
Book Synopsis Efficient Processing of Deep Neural Networks by : Vivienne Sze
Download or read book Efficient Processing of Deep Neural Networks written by Vivienne Sze and published by Springer Nature. This book was released on 2022-05-31 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Book Synopsis The NEURON Book by : Nicholas T. Carnevale
Download or read book The NEURON Book written by Nicholas T. Carnevale and published by Cambridge University Press. This book was released on 2006-01-12 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authoritative reference on NEURON, the simulation environment for modeling biological neurons and neural networks that enjoys wide use in the experimental and computational neuroscience communities. This book shows how to use NEURON to construct and apply empirically based models. Written primarily for neuroscience investigators, teachers, and students, it assumes no previous knowledge of computer programming or numerical methods. Readers with a background in the physical sciences or mathematics, who have some knowledge about brain cells and circuits and are interested in computational modeling, will also find it helpful. The NEURON Book covers material that ranges from the inner workings of this program, to practical considerations involved in specifying the anatomical and biophysical properties that are to be represented in models. It uses a problem-solving approach, with many working examples that readers can try for themselves.
Book Synopsis Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices by : Manan Suri
Download or read book Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices written by Manan Suri and published by Springer. This book was released on 2017-01-21 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.