First-Principles Theoretical Investigation on Phonon Transport in Materials with Extreme Conductivity

Download First-Principles Theoretical Investigation on Phonon Transport in Materials with Extreme Conductivity PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (134 download)

DOWNLOAD NOW!


Book Synopsis First-Principles Theoretical Investigation on Phonon Transport in Materials with Extreme Conductivity by : Huan Wu

Download or read book First-Principles Theoretical Investigation on Phonon Transport in Materials with Extreme Conductivity written by Huan Wu and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced materials with extreme thermal conductivity are critically important for various technological applications including energy conversion, storage, and thermal management. High thermal conductivity is desirable for efficient heat spreading in electronics, and low thermal conductivity is needed for thermal insulation and thermoelectric energy harvesting. However, practical application deployments are usually limited by the materials availability and understanding the fundamental origins for extreme thermal conductivity remains challenging. My PhD research focuses on applying and developing first-principles computations to understand the microscopic thermal transport mechanisms of the emerging materials and to discover new materials with ultrahigh and ultralow thermal conductivity. My dissertation is composed of three themes. The first theme is focused on understanding the fundamental origins and transport mechanisms for a group of high thermal conductivity semiconductors that were discovered recently by our group. In particular, boron phosphide (BP) and boron arsenide (BAs) crystals have been synthesized and measured with thermal conductivities of 460 and 1300 W/mK respectively, representing the best thermal conductor among common bulk metals and semiconductors. I have conducted ab initio calculations based on density functional theory to investigate phonon anharmonicity, size-dependent transport from diffusive to ballistic regime, as well as the effect from defect scattering. Our study shows that, unlike the commonly accepted rule for most materials near room temperature, high-order anharmonicity through the four-phonon process is significant in BA because of its unique band structure. In addition, I have performed multiscale Monte Carlo simulations to solve phonon Boltzmann transport equations to compute heat dissipation in three-dimensional practical measurement samples and electronic devices, which quantitively determines temperature distributed resulted by non-equilibrium phonon transport and underscores the promise of our developed BP and BAs for the next generation of thermal management technologies. The second theme of my thesis is to theoretical search for new ultra-high thermal conductivity materials, with the aim to push the limit of existing materials database. We have calculated the thermal conductivity of several B-C-X ternary compounds and found the R3m-BNC2 has ultrahigh thermal conductivity at ~2200 W/mK, which is comparable with the existing highest thermal conductivity materials, diamond. We also calculate the thermal conductivity of single-layer boron compounds in III-V group, and find high thermal conductivity of single-layer h-BAs at around 400 W/K. My computational studies enable atomistic understanding through their phonon band structures, scattering spaces, lifetimes, etc. The third theme of my thesis is to investigate phonon transport in ultralow thermal conductivity materials with a focus on tin selenide (SnSe). SnSe is a recently discovered high performance thermoelectric material, but its intrinsic low thermal conductivity remains debating in recent literature. In collaboration with my labmates, we combine phonon theory and experiments to investigate phonon softening physics. In particular, my calculated phonon frequencies of SnSe under varying temperatures indicate strong phonon renormalization due to higher-order anharmonicity. The comparison of my theory results with experiments indicates that the widely used harmonic model fails to descript the phonon renormalization and thus thermal conductivity of SnSe. Instead, I have developed self-consistent phonon theory to capture the higher order interactions and provided very good agreement with the experimentally measured ultralow thermal conductivity and thermophysical properties of SnSe.

Predicting Phonon Transport in Two-Dimensional Materials Using First-Principles Calculations and the Boltzmann Transport Equation

Download Predicting Phonon Transport in Two-Dimensional Materials Using First-Principles Calculations and the Boltzmann Transport Equation PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (133 download)

DOWNLOAD NOW!


Book Synopsis Predicting Phonon Transport in Two-Dimensional Materials Using First-Principles Calculations and the Boltzmann Transport Equation by : Armin Taheri

Download or read book Predicting Phonon Transport in Two-Dimensional Materials Using First-Principles Calculations and the Boltzmann Transport Equation written by Armin Taheri and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this thesis is to study phonon thermal transport in two-dimensional (2D) materials using first-principles density functional theory (DFT) calculations and the full solution of the Boltzmann transport equation (BTE). A wide range of 2D materials including graphene, 2D structures of group-VA, and recently emerged NX (X=P, As, Sb) compound monolayers are considered. Special attention is given to a mode-by-mode study of the thermal tunability via strain and functionalization. First, this thesis investigated the sensitivity of the DFT-calculated intrinsic thermal conductivity and phonon properties of 2D materials to the choice of exchange-correlation (XC) and pseudopotential (PP). It was found that the choice of the XC-PP combination results in significant discrepancies among predicted thermal conductivities of graphene at room temperature, in the range of 5442-8677 Wm^(-1)K^(-1). The LDA-NC and PBE-PAW combinations predicted the thermal conductivities in best agreement with available experimental data. This sensitivity analysis was an essential first step towards using DFT to engineer the phonon thermal transport in 2D systems. Next, DFT was used to systematically investigate the strain-dependent lattice thermal conductivity of -arsenene and -phosphorene, 2D monolayers of group-VA. The results showed that the thermal conductivity in both monolayers exhibits an up-and-down behavior when biaxial tensile strain is applied in the range from 0% to 9%. An interplay between phonon group velocities, heat capacities, and relaxation times, is found to be responsible for this behaviour. Finally, this project investigated the thermal conductivity of nitrogen functionalized - NX (X=P, As, Sb) monolayers. The results showed that the room-temperature thermal conductivities of -NP, -NAs, and -NSb are about 1.1, 5.5, and 34.0 times higher than those of their single-element -P, -As, and -Sb monolayers, respectively. The phonon transport analysis revealed that higher phonon group velocities, as well as higher phonon lifetimes were responsible for such an enhancement in the thermal conductivities of - NX compounds compared to single-element group-VA monolayers. Also, it was found that -NP has the minimum thermal conductivity among -NX monolayers, while it has the minimum average atomic mass. This thesis provides valuable insight into phonon physics and thermal transport in novel 2D materials using advanced DFT calculations.

Phonon Transport in Ultrahigh and Ultralow Thermal Conductivity Materials

Download Phonon Transport in Ultrahigh and Ultralow Thermal Conductivity Materials PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 151 pages
Book Rating : 4.:/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Phonon Transport in Ultrahigh and Ultralow Thermal Conductivity Materials by : Joonsang Kang

Download or read book Phonon Transport in Ultrahigh and Ultralow Thermal Conductivity Materials written by Joonsang Kang and published by . This book was released on 2019 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced materials with extreme thermal conductivity are critically important for various technological applications including energy conversion, storage, and thermal management. Low thermal conductivity is needed for thermal insulation and thermoelectric energy harvesting, while high thermal conductivity is desirable for efficient heat spreading in electronics. However, practical application deployments are usually limited by the materials availability in nature. Moreover, understanding the fundamental origins for extreme thermal conductivity still remains challenging. My PhD research focuses on finding new thermal materials and unveiling fundamental phonon transport mechanisms in extreme thermal conductivity matters to push the frontier of thermal science. My dissertation is composed of three topics. The first topic is focused on developing and investigating a new group of ultrahigh conductivity materials. High-quality boron phosphide (BP) and boron arsenide (BAs) crystal are synthesized and measured with thermal conductivities of 460 and 1300 W/mK, respectively. In particular, our result shows that BAs is the best thermal conductor among common bulk metals and semiconductors. To better understand the fundamental origin of such an ultrahigh thermal conductivity, advanced phonon spectroscopy and temperature dependent characterizations are performed. Our measurements, in conjunction with atomistic theory, reveal that, unlike the commonly accepted rule for most materials near room temperature, high-order anharmonicity through the four-phonon process is significant in BA because of its unique band structure. Our result underscores the promise of using BP and BAs for thermal management and develops microscopic understanding of the phonon transport mechanisms. The second topic of my thesis is to investigate phonon transport in ultralow thermal conductivity material with a focus on tin selenide (SnSe). SnSe is a recently discovered material for high performance thermoelectricity. However, the thermal properties of intrinsic SnSe remain elusive in literature. To understand the dominant phonon transport mechanisms for the extremely low thermal conductivity of SnSe, temperature-dependent sound velocity, lattice expansion, and Gr neisen parameter was measured. The measurement result shows that high-order anharmonicity introduces strong phonon renormalization and the ultralow thermal conductivity. The third topic of the thesis is to investigate in-situ dynamic tuning of thermal conductivity in layered materials. A novel device platform based on lithium ion battery is developed to characterize the interactions between ions and phonons of layered materials. We observe a highly reversible modulation and anisotropy of thermal conductivity from phonon scattering introduced by ionic intercalation in the interspacing layers. This study provides a unique approach to explore the fundamental energy transport involving lattices and ions and open up new opportunities in thermal engineering.

Phonon Focusing and Phonon Transport

Download Phonon Focusing and Phonon Transport PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 311067050X
Total Pages : 221 pages
Book Rating : 4.1/5 (16 download)

DOWNLOAD NOW!


Book Synopsis Phonon Focusing and Phonon Transport by : Igor Gaynitdinovich Kuleyev

Download or read book Phonon Focusing and Phonon Transport written by Igor Gaynitdinovich Kuleyev and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-06-08 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: The monograph is devoted to the investigation of physical processes that govern the phonon transport in bulk and nanoscale single-crystal samples of cubic symmetry. Special emphasis is given to the study of phonon focusing in cubic crystals and its influence on the boundary scattering and lattice thermal conductivity of bulk materials and nanostructures.

Advanced Thermoelectrics

Download Advanced Thermoelectrics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351649809
Total Pages : 1102 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Advanced Thermoelectrics by : Zhifeng Ren

Download or read book Advanced Thermoelectrics written by Zhifeng Ren and published by CRC Press. This book was released on 2017-11-06 with total page 1102 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview on nanostructured thermoelectric materials and devices, covering fundamental concepts, synthesis techniques, device contacts and stability, and potential applications, especially in waste heat recovery and solar energy conversion. The contents focus on thermoelectric devices made from nanomaterials with high thermoelectric efficiency for use in large scale to generate megawatts electricity. Covers the latest discoveries, methods, technologies in materials, contacts, modules, and systems for thermoelectricity. Addresses practical details of how to improve the efficiency and power output of a generator by optimizing contacts and electrical conductivity. Gives tips on how to realize a realistic and usable device or module with attention to large scale industry synthesis and product development. Prof. Zhifeng Ren is M. D. Anderson Professor in the Department of Physics and the Texas Center for Superconductivity at the University of Houston. Prof. Yucheng Lan is an associate professor in Morgan State University. Prof. Qinyong Zhang is a professor in the Center for Advanced Materials and Energy at Xihua University of China.

Theoretical Investigations of Phonon Transport in Insulators

Download Theoretical Investigations of Phonon Transport in Insulators PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (596 download)

DOWNLOAD NOW!


Book Synopsis Theoretical Investigations of Phonon Transport in Insulators by : S. R. Williams

Download or read book Theoretical Investigations of Phonon Transport in Insulators written by S. R. Williams and published by . This book was released on 1986 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Phonon Transport at Boundaries and Interfaces in Two-dimensional Materials

Download Phonon Transport at Boundaries and Interfaces in Two-dimensional Materials PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Phonon Transport at Boundaries and Interfaces in Two-dimensional Materials by : Cameron Foss

Download or read book Phonon Transport at Boundaries and Interfaces in Two-dimensional Materials written by Cameron Foss and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A typical electronic or photonic device may consist of several materials each one potentially meeting at an interface or terminating with a free-surface boundary. As modern device dimensions reach deeper into the nanoscale regime, interfaces and boundaries become increasingly influential to both electrical and thermal energy transport. While a large majority of the device community focuses on the former, we focus here on the latter issue of thermal transport which is of great importance in implementing nanoscale devices as well as developing solutions for on-chip heat removal and waste heat scavenging. In this document we will discuss how modern performance enhancing techniques (strain, nanostructuring, alloying, etc.) affect thermal transport at boundaries and across interfaces through the avenue of three case studies. We use first-principles Density Functional Perturbation Theory to obtain the phonon spectrum of the materials of interest and then use the dispersion data as input to a phonon Boltzmann Transport model. First, we investigate the combined effects of strain and boundary scattering on the in-plane and cross-plane thermal conductivity of thin-film silicon and germanium. Second, we review a recently developed model for cross-dimensional (2D-3D) phonon transport and apply it to 3D-2D-3D stacked interfaces involving graphene and molybdenum disulfide 2D-layers. Third, we combine relevant models from earlier Chapters to study extrinsic effects, such as line edge roughness and substrate effects, on in-plane and through-plane thermal transport in 1H-phase transition metal dichalcogenide (TMD) alloys. Through these investigations we show that: (1) biaxial strain in Si and Ge thin-films can modulate cross-plane conductivity due to strong boundary scattering, (2) the thermal boundary conductance between 2D-3D materials can be enhanced in the presence of an encapsulating layer, and (3) the thermal conductivity of 1H-phase TMDs can be reduced by an order of magnitude through the combination of nanostructuring, alloying, and substrate effects.

First Principles Modeling of Phonon Heat Conduction in Nanoscale Crystalline Structures

Download First Principles Modeling of Phonon Heat Conduction in Nanoscale Crystalline Structures PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (16 download)

DOWNLOAD NOW!


Book Synopsis First Principles Modeling of Phonon Heat Conduction in Nanoscale Crystalline Structures by :

Download or read book First Principles Modeling of Phonon Heat Conduction in Nanoscale Crystalline Structures written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The inability to remove heat efficiently is currently one of the stumbling blocks toward further miniaturization and advancement of electronic, optoelectronic, and micro-electro-mechanical devices. In order to formulate better heat removal strategies and designs, it is first necessary to understand the fundamental mechanisms of heat transport in semiconductor thin films. Modeling techniques, based on first principles, can play the crucial role of filling gaps in our understanding by revealing information that experiments are incapable of. Heat conduction in crystalline semiconductor films occurs by lattice vibrations that result in the propagation of quanta of energy called phonons. If the mean free path of the traveling phonons is larger than the film thickness, thermodynamic equilibrium ceases to exist, and thus, the Fourier law of heat conduction is invalid. In this scenario, bulk thermal conductivity values, which are experimentally determined by inversion of the Fourier law itself, cannot be used for analysis. The Boltzmann Transport Equation (BTE) is a powerful tool to treat non-equilibrium heat transport in thin films. The BTE describes the evolution of the number density (or energy) distribution for phonons as a result of transport (or drift) and inter-phonon collisions. Drift causes the phonon energy distribution to deviate from equilibrium, while collisions tend to restore equilibrium. Prior to solution of the BTE, it is necessary to compute the lifetimes (or scattering rates) for phonons of all wave-vector and polarization. The lifetime of a phonon is the net result of its collisions with other phonons, which in turn is governed by the conservation of energy and momentum during the underlying collision processes. This research project contributed to the state-of-the-art in two ways: (1) by developing and demonstrating a calibration-free simple methodology to compute intrinsic phonon scattering (Normal and Umklapp processes) time scales with the inclusion of optical phonons, and (2) by developing a suite of numerical algorithms for solution of the BTE for phonons. The suite of numerical algorithms includes Monte Carlo techniques and deterministic techniques based on the Discrete Ordinates Method and the Ballistic-Diffusive approximation of the BTE. These methods were applied to calculation of thermal conductivity of silicon thin films, and to simulate heat conduction in multi-dimensional structures. In addition, thermal transport in silicon nanowires was investigated using two different first principles methods. One was to apply the Green-Kubo formulation to an equilibrium system. The other was to use Non-Equilibrium Molecular Dynamics (NEMD). Results of MD simulations showed that the nanowire cross-sectional shape and size significantly affects the thermal conductivity, as has been found experimentally. In summary, the project clarified the role of various phonon modes - in particular, optical phonon - in non-equilibrium transport in silicon. It laid the foundation for the solution of the BTE in complex three-dimensional structures using deterministic techniques, paving the way for the development of robust numerical tools that could be coupled to existing device simulation tools to enable coupled electro-thermal modeling of practical electronic/optoelectronic devices. Finally, it shed light on why the thermal conductivity of silicon nanowires is so sensitive to its cross-sectional shape.

The Physics of Phonons

Download The Physics of Phonons PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1351409557
Total Pages : 438 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis The Physics of Phonons by : Gyaneshwar P. Srivastava

Download or read book The Physics of Phonons written by Gyaneshwar P. Srivastava and published by Routledge. This book was released on 2019-07-16 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: There have been few books devoted to the study of phonons, a major area of condensed matter physics. The Physics of Phonons is a comprehensive theoretical discussion of the most important topics, including some topics not previously presented in book form. Although primarily theoretical in approach, the author refers to experimental results wherever possible, ensuring an ideal book for both experimental and theoretical researchers. The author begins with an introduction to crystal symmetry and continues with a discussion of lattice dynamics in the harmonic approximation, including the traditional phenomenological approach and the more recent ab initio approach, detailed for the first time in this book. A discussion of anharmonicity is followed by the theory of lattice thermal conductivity, presented at a level far beyond that available in any other book. The chapter on phonon interactions is likewise more comprehensive than any similar discussion elsewhere. The sections on phonons in superlattices, impure and mixed crystals, quasicrystals, phonon spectroscopy, Kapitza resistance, and quantum evaporation also contain material appearing in book form for the first time. The book is complemented by numerous diagrams that aid understanding and is comprehensively referenced for further study. With its unprecedented wide coverage of the field, The Physics of Phonons will be indispensable to all postgraduates, advanced undergraduates, and researchers working on condensed matter physics.

Thermoelectric Thin Films

Download Thermoelectric Thin Films PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030200434
Total Pages : 211 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Thermoelectric Thin Films by : Paolo Mele

Download or read book Thermoelectric Thin Films written by Paolo Mele and published by Springer. This book was released on 2019-07-17 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will provide readers with deep insight into the intriguing science of thermoelectric thin films. It serves as a fundamental information source on the techniques and methodologies involved in thermoelectric thin film growth, characterization and device processing. This book involves widespread contributions on several categories of thermoelectric thin films: oxides, chalcogenides, iodates, nitrides and polymers. This will serve as an invaluable resource for experts to consolidate their knowledge and will provide insight and inspiration to beginners wishing to learn about thermoelectric thin films. Provides a single-source reference on a wide spectrum of topics related to thermoelectric thin films, from organic chemistry to devices, from physical chemistry to applied physics, from synthesis to device implementation; Covers several categories of thermoelectric thin films based on different material approaches such as oxides, chalcogenides, iodates, nitrides and polymers; Discusses synthesis, characterization, and device processing of thermoelectric thin films, as well as the nanoengineering approach to tailor the properties of the used materials at the nanoscale level.

Studying Phonon Mean Free Paths at the Nanoscale

Download Studying Phonon Mean Free Paths at the Nanoscale PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 119 pages
Book Rating : 4.:/5 (97 download)

DOWNLOAD NOW!


Book Synopsis Studying Phonon Mean Free Paths at the Nanoscale by : Lingping Zeng

Download or read book Studying Phonon Mean Free Paths at the Nanoscale written by Lingping Zeng and published by . This book was released on 2016 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat conduction in semiconductors and dielectrics involves cumulative contributions from phonons with different frequencies and mean free paths (MFPs). Knowing the phonon MFP distribution allows us to gain insight into the fundamental microscopic transport physics and has important implications for many energy applications. The key metric that quantifies the relative contributions of different phonon MFPs to thermal conductivity is termed thermal conductivity accumulation function. In this thesis, we advance a thermal conductivity spectroscopy technique based upon experimental observation of non-diffusive thermal transport using wire grid linear polarizer in conjunction with time-domain thermoreflectance (TDTR) pump-and-probe measurement setup. Consistent algorithm based on solution from the phonon Boltzmann transport equation (BTE) is also developed to approximately extract the thermal conductivity accumulation functions in materials studied. The heat flux suppression function appropriate for the experimental sample geometry relates the measured apparent thermal conductivities to the material's phonon MFP distributions. We develop a multi-dimensional thermal transport model based on the gray phonon BTE to find the suppression function relevant to our spectroscopy experiment. The simulation results reveal that the suppression function depends upon both the heater size and the heater array period. We also find that the suppression function depends significantly on the location of the temperature measurement. Residual suppression effect is observed for finite filling fractions (ratio of heater size to heater array period) due to the transport coupling in the underlying substrate induced by the neighboring heaters. Prior phonon MFP spectroscopy techniques suffer from one or several of the following limitations: (1) diffraction limited to micrometer lengthscales by focusing optics, (2) applying only to transparent materials, or (3) involving complex micro-fabrications. We explore an alternate approach here using wire grid linear polarizer in combination with TDTR measurement. The wire grid polarizer is designed with sub-wavelength gaps between neighboring heaters to prevent direct photo-excitation in the substrate while simultaneously functioning as heaters and thermometers during the measurement. The spectroscopy technique is demonstrated in crystalline silicon by studying length-dependent thermal transport across a range of lengthscales and temperatures. We utilize the calculated heat flux suppression functions and the measured size-dependent effective thermal conductivities to reconstruct the phonon MFPs in silicon and achieve reasonably good agreement with calculation results from first principle density function theory. Knowledge of phonon MFP distributions in thermoelectric materials will help design nanostructures to further reduce lattice thermal conductivity to achieve better thermoelectric performance in the next-generation thermoelectric devices. We apply the developed wire grid polarizer spectroscopy technique to study phonon MFP distributions in two thermoelectric materials: Nb0.95 Ti0.05FeSb and boron-doped nanocrystalline Si80Ge20B. We find that the dominant phonon MFPs that contribute to thermal conductivity in those two materials are in the a few tens to a few hundreds of nanometers. The measurement results also shed light on why nanostructuring is an effective approach to scattering phonons and improve the thermoelectric behavior.

The Boron Arsenides

Download The Boron Arsenides PDF Online Free

Author :
Publisher : Materials Research Forum LLC
ISBN 13 : 1644902230
Total Pages : 119 pages
Book Rating : 4.6/5 (449 download)

DOWNLOAD NOW!


Book Synopsis The Boron Arsenides by : David J. Fisher

Download or read book The Boron Arsenides written by David J. Fisher and published by Materials Research Forum LLC. This book was released on 2023-01-25 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boron Arsenide offers very interesting electronic properties, as well as a high thermal conductivity; nearly 10 times higher than that of silicon. It has been hailed as ‘the best semiconductor material ever found’. The present book presents a detailed review of this material and its potential applications. The materials covered include Icosahedral Boron Arsenide, Hexagonal Boron Arsenide, Amorphous Boron Arsenide and Cubic Boron Arsenide. The book references 166 original resources with their direct web links for in-depth reading. Keywords: Boron Arsenides, Electron Mobility, Hole Mobility, Band-gap, Monolayers, Defects, Mechanical Properties, Photo-electrodes, Thermal Conductivity, Heat-spreading.

Lattice Dynamics

Download Lattice Dynamics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 184 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Lattice Dynamics by : Alexei A. Maradudin

Download or read book Lattice Dynamics written by Alexei A. Maradudin and published by . This book was released on 1969 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Two-dimensional Materials

Download Two-dimensional Materials PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9535125540
Total Pages : 282 pages
Book Rating : 4.5/5 (351 download)

DOWNLOAD NOW!


Book Synopsis Two-dimensional Materials by : Pramoda Kumar Nayak

Download or read book Two-dimensional Materials written by Pramoda Kumar Nayak and published by BoD – Books on Demand. This book was released on 2016-08-31 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.

Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures

Download Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128184760
Total Pages : 502 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures by : Eui-Hyeok Yang

Download or read book Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures written by Eui-Hyeok Yang and published by Elsevier. This book was released on 2020-06-19 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales Provides fundamental theoretical insights, example problems, sample code and exercise problems Outlines major characterization and synthesis methods for different types of 2D materials

Modern Methods of Crystal Structure Prediction

Download Modern Methods of Crystal Structure Prediction PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 352764377X
Total Pages : 378 pages
Book Rating : 4.5/5 (276 download)

DOWNLOAD NOW!


Book Synopsis Modern Methods of Crystal Structure Prediction by : Artem R. Oganov

Download or read book Modern Methods of Crystal Structure Prediction written by Artem R. Oganov and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gathering leading specialists in the field of structure prediction, this book provides a unique view of this complex and rapidly developing field, reflecting the numerous viewpoints of the different authors. A summary of the major achievements over the last few years and of the challenges still remaining makes this monograph very timely.

Computational Thermodynamics of Materials

Download Computational Thermodynamics of Materials PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521198968
Total Pages : 261 pages
Book Rating : 4.5/5 (211 download)

DOWNLOAD NOW!


Book Synopsis Computational Thermodynamics of Materials by : Zi-Kui Liu

Download or read book Computational Thermodynamics of Materials written by Zi-Kui Liu and published by Cambridge University Press. This book was released on 2016-06-30 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrates fundamental concepts with experimental data and practical applications, including worked examples and end-of-chapter problems.