Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Finding Mle Of Patterned Covariance Matrices By The Em Algorithm
Download Finding Mle Of Patterned Covariance Matrices By The Em Algorithm full books in PDF, epub, and Kindle. Read online Finding Mle Of Patterned Covariance Matrices By The Em Algorithm ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Finding MLE of Patterned Covariance Matrices by the EM Algorithm by : Donald B. Rubin
Download or read book Finding MLE of Patterned Covariance Matrices by the EM Algorithm written by Donald B. Rubin and published by . This book was released on 1981 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The EM Algorithm and Extensions by : Geoffrey J. McLachlan
Download or read book The EM Algorithm and Extensions written by Geoffrey J. McLachlan and published by John Wiley & Sons. This book was released on 2007-11-09 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only single-source——now completely updated and revised——to offer a unified treatment of the theory, methodology, and applications of the EM algorithm Complete with updates that capture developments from the past decade, The EM Algorithm and Extensions, Second Edition successfully provides a basic understanding of the EM algorithm by describing its inception, implementation, and applicability in numerous statistical contexts. In conjunction with the fundamentals of the topic, the authors discuss convergence issues and computation of standard errors, and, in addition, unveil many parallels and connections between the EM algorithm and Markov chain Monte Carlo algorithms. Thorough discussions on the complexities and drawbacks that arise from the basic EM algorithm, such as slow convergence and lack of an in-built procedure to compute the covariance matrix of parameter estimates, are also presented. While the general philosophy of the First Edition has been maintained, this timely new edition has been updated, revised, and expanded to include: New chapters on Monte Carlo versions of the EM algorithm and generalizations of the EM algorithm New results on convergence, including convergence of the EM algorithm in constrained parameter spaces Expanded discussion of standard error computation methods, such as methods for categorical data and methods based on numerical differentiation Coverage of the interval EM, which locates all stationary points in a designated region of the parameter space Exploration of the EM algorithm's relationship with the Gibbs sampler and other Markov chain Monte Carlo methods Plentiful pedagogical elements—chapter introductions, lists of examples, author and subject indices, computer-drawn graphics, and a related Web site The EM Algorithm and Extensions, Second Edition serves as an excellent text for graduate-level statistics students and is also a comprehensive resource for theoreticians, practitioners, and researchers in the social and physical sciences who would like to extend their knowledge of the EM algorithm.
Book Synopsis Theory and Use of the EM Algorithm by : Maya R. Gupta
Download or read book Theory and Use of the EM Algorithm written by Maya R. Gupta and published by Now Publishers Inc. This book was released on 2011 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the expectation-maximization (EM) algorithm and provides an intuitive and mathematically rigorous understanding of this method. Theory and Use of the EM Algorithm is designed to be useful to both the EM novice and the experienced EM user looking to better understand the method and its use.
Book Synopsis Advances in Pattern Recognition ICAPR2003 by :
Download or read book Advances in Pattern Recognition ICAPR2003 written by and published by Allied Publishers. This book was released on 2003 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Matrix Differential Calculus with Applications in Statistics and Econometrics by : Jan R. Magnus
Download or read book Matrix Differential Calculus with Applications in Statistics and Econometrics written by Jan R. Magnus and published by John Wiley & Sons. This book was released on 2019-03-15 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: A brand new, fully updated edition of a popular classic on matrix differential calculus with applications in statistics and econometrics This exhaustive, self-contained book on matrix theory and matrix differential calculus provides a treatment of matrix calculus based on differentials and shows how easy it is to use this theory once you have mastered the technique. Jan Magnus, who, along with the late Heinz Neudecker, pioneered the theory, develops it further in this new edition and provides many examples along the way to support it. Matrix calculus has become an essential tool for quantitative methods in a large number of applications, ranging from social and behavioral sciences to econometrics. It is still relevant and used today in a wide range of subjects such as the biosciences and psychology. Matrix Differential Calculus with Applications in Statistics and Econometrics, Third Edition contains all of the essentials of multivariable calculus with an emphasis on the use of differentials. It starts by presenting a concise, yet thorough overview of matrix algebra, then goes on to develop the theory of differentials. The rest of the text combines the theory and application of matrix differential calculus, providing the practitioner and researcher with both a quick review and a detailed reference. Fulfills the need for an updated and unified treatment of matrix differential calculus Contains many new examples and exercises based on questions asked of the author over the years Covers new developments in field and features new applications Written by a leading expert and pioneer of the theory Part of the Wiley Series in Probability and Statistics Matrix Differential Calculus With Applications in Statistics and Econometrics Third Edition is an ideal text for graduate students and academics studying the subject, as well as for postgraduates and specialists working in biosciences and psychology.
Book Synopsis Journal of Statistical Planning and Inference by : North-Holland Publishing Company
Download or read book Journal of Statistical Planning and Inference written by North-Holland Publishing Company and published by . This book was released on 1999 with total page 1214 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Research Report written by and published by . This book was released on 1981 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Finite Mixture Models by : Geoffrey McLachlan
Download or read book Finite Mixture Models written by Geoffrey McLachlan and published by John Wiley & Sons. This book was released on 2004-03-22 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
Book Synopsis Missing Data in the Multivariate Normal Patterned Mean and Covariance Matrix Testing and Estimation Problem by : Ted H. Szatrowski
Download or read book Missing Data in the Multivariate Normal Patterned Mean and Covariance Matrix Testing and Estimation Problem written by Ted H. Szatrowski and published by . This book was released on 1981 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Energy Minimization Methods in Computer Vision and Pattern Recognition by : Anand Rangarajan
Download or read book Energy Minimization Methods in Computer Vision and Pattern Recognition written by Anand Rangarajan and published by Springer. This book was released on 2003-10-02 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 4th International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2003, held in Lisbon, Portugal in July 2003.The 33 revised full papers presented were carefully reviewed and selected from 66 submissions. The papers are organized in topical sections on unsupervised learning and matching, probabilistic modeling, segmentation and grouping, shape modeling, restoration and reconstruction, and graphs and graph-based methods.
Book Synopsis Markov Chain Monte Carlo in Practice by : W.R. Gilks
Download or read book Markov Chain Monte Carlo in Practice written by W.R. Gilks and published by CRC Press. This book was released on 1995-12-01 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a family study of breast cancer, epidemiologists in Southern California increase the power for detecting a gene-environment interaction. In Gambia, a study helps a vaccination program reduce the incidence of Hepatitis B carriage. Archaeologists in Austria place a Bronze Age site in its true temporal location on the calendar scale. And in France,
Book Synopsis Modeling Ordered Choices by : William H. Greene
Download or read book Modeling Ordered Choices written by William H. Greene and published by Cambridge University Press. This book was released on 2010-04-08 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.
Book Synopsis Mixed Effects Models for Complex Data by : Lang Wu
Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Book Synopsis Variance Components by : Shayle R. Searle
Download or read book Variance Components written by Shayle R. Searle and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . .Variance Components is an excellent book. It is organized and well written, and provides many references to a variety of topics. I recommend it to anyone with interest in linear models." —Journal of the American Statistical Association "This book provides a broad coverage of methods for estimating variance components which appeal to students and research workers . . . The authors make an outstanding contribution to teaching and research in the field of variance component estimation." —Mathematical Reviews "The authors have done an excellent job in collecting materials on a broad range of topics. Readers will indeed gain from using this book . . . I must say that the authors have done a commendable job in their scholarly presentation." —Technometrics This book focuses on summarizing the variability of statistical data known as the analysis of variance table. Penned in a readable style, it provides an up-to-date treatment of research in the area. The book begins with the history of analysis of variance and continues with discussions of balanced data, analysis of variance for unbalanced data, predictions of random variables, hierarchical models and Bayesian estimation, binary and discrete data, and the dispersion mean model.
Download or read book Core Statistics written by Simon N. Wood and published by Cambridge University Press. This book was released on 2015-04-13 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Core Statistics is a compact starter course on the theory, models, and computational tools needed to make informed use of powerful statistical methods.
Book Synopsis Bayesian Filtering and Smoothing by : Simo Särkkä
Download or read book Bayesian Filtering and Smoothing written by Simo Särkkä and published by Cambridge University Press. This book was released on 2013-09-05 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Book Synopsis Lectures on Algebraic Statistics by : Mathias Drton
Download or read book Lectures on Algebraic Statistics written by Mathias Drton and published by Springer Science & Business Media. This book was released on 2009-04-25 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.