Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Field Arithmetic
Download Field Arithmetic full books in PDF, epub, and Kindle. Read online Field Arithmetic ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Field Arithmetic by : Michael D. Fried
Download or read book Field Arithmetic written by Michael D. Fried and published by Springer Science & Business Media. This book was released on 2005 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?
Book Synopsis Basic Structures of Function Field Arithmetic by : David Goss
Download or read book Basic Structures of Function Field Arithmetic written by David Goss and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews:"The book...is a thorough and very readable introduction to the arithmetic of function fields of one variable over a finite field, by an author who has made fundamental contributions to the field. It serves as a definitive reference volume, as well as offering graduate students with a solid understanding of algebraic number theory the opportunity to quickly reach the frontiers of knowledge in an important area of mathematics...The arithmetic of function fields is a universe filled with beautiful surprises, in which familiar objects from classical number theory reappear in new guises, and in which entirely new objects play important roles. Goss'clear exposition and lively style make this book an excellent introduction to this fascinating field." MR 97i:11062
Book Synopsis Function Field Arithmetic by : Dinesh S. Thakur
Download or read book Function Field Arithmetic written by Dinesh S. Thakur and published by World Scientific. This book was released on 2004 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an exposition of function field arithmetic with emphasis on recent developments concerning Drinfeld modules, the arithmetic of special values of transcendental functions (such as zeta and gamma functions and their interpolations), diophantine approximation and related interesting open problems. While it covers many topics treated in 'Basic Structures of Function Field Arithmetic' by David Goss, it complements that book with the inclusion of recent developments as well as the treatment of new topics such as diophantine approximation, hypergeometric functions, modular forms, transcendence, automata and solitons. There is also new work on multizeta values and log-algebraicity. The author has included numerous worked-out examples. Many open problems, which can serve as good thesis problems, are discussed.
Book Synopsis Field Arithmetic by : Michael D. Fried
Download or read book Field Arithmetic written by Michael D. Fried and published by Springer Science & Business Media. This book was released on 2008-04-09 with total page 815 pages. Available in PDF, EPUB and Kindle. Book excerpt: Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)? The third edition improves the second edition in two ways: First it removes many typos and mathematical inaccuracies that occur in the second edition (in particular in the references). Secondly, the third edition reports on five open problems (out of thirtyfour open problems of the second edition) that have been partially or fully solved since that edition appeared in 2005.
Book Synopsis Hardware Implementation of Finite-Field Arithmetic by : Jean-Pierre Deschamps
Download or read book Hardware Implementation of Finite-Field Arithmetic written by Jean-Pierre Deschamps and published by McGraw Hill Professional. This book was released on 2009-01-14 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implement Finite-Field Arithmetic in Specific Hardware (FPGA and ASIC) Master cutting-edge electronic circuit synthesis and design with help from this detailed guide. Hardware Implementation of Finite-Field Arithmetic describes algorithms and circuits for executing finite-field operations, including addition, subtraction, multiplication, squaring, exponentiation, and division. This comprehensive resource begins with an overview of mathematics, covering algebra, number theory, finite fields, and cryptography. The book then presents algorithms which can be executed and verified with actual input data. Logic schemes and VHDL models are described in such a way that the corresponding circuits can be easily simulated and synthesized. The book concludes with a real-world example of a finite-field application--elliptic-curve cryptography. This is an essential guide for hardware engineers involved in the development of embedded systems. Get detailed coverage of: Modulo m reduction Modulo m addition, subtraction, multiplication, and exponentiation Operations over GF(p) and GF(pm) Operations over the commutative ring Zp[x]/f(x) Operations over the binary field GF(2m) using normal, polynomial, dual, and triangular
Book Synopsis Arithmetic and Geometry over Local Fields by : Bruno Anglès
Download or read book Arithmetic and Geometry over Local Fields written by Bruno Anglès and published by Springer Nature. This book was released on 2021-03-03 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume introduces some recent developments in Arithmetic Geometry over local fields. Its seven chapters are centered around two common themes: the study of Drinfeld modules and non-Archimedean analytic geometry. The notes grew out of lectures held during the research program "Arithmetic and geometry of local and global fields" which took place at the Vietnam Institute of Advanced Study in Mathematics (VIASM) from June to August 2018. The authors, leading experts in the field, have put great effort into making the text as self-contained as possible, introducing the basic tools of the subject. The numerous concrete examples and suggested research problems will enable graduate students and young researchers to quickly reach the frontiers of this fascinating branch of mathematics.
Book Synopsis Function Field Arithmetic by : Dinesh S. Thakur
Download or read book Function Field Arithmetic written by Dinesh S. Thakur and published by World Scientific. This book was released on 2004 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an exposition of function field arithmetic withemphasis on recent developments concerning Drinfeld modules, thearithmetic of special values of transcendental functions (such as zetaand gamma functions and their interpolations), diophantineapproximation and related interesting open problems.
Book Synopsis Algebraic Function Fields and Codes by : Henning Stichtenoth
Download or read book Algebraic Function Fields and Codes written by Henning Stichtenoth and published by Springer Science & Business Media. This book was released on 2009-02-11 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.
Book Synopsis Arithmetic of Finite Fields by : Claude Carlet
Download or read book Arithmetic of Finite Fields written by Claude Carlet and published by Springer. This book was released on 2007-09-21 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First International Workshop on the Arithmetic of Finite Fields, WAIFI 2007, held in Madrid, Spain in June 2007. It covers structures in finite fields, efficient implementation and architectures, efficient finite field arithmetic, classification and construction of mappings over finite fields, curve algebra, cryptography, codes, and discrete structures.
Book Synopsis Arithmetic of Finite Fields by : M. Anwar Hasan
Download or read book Arithmetic of Finite Fields written by M. Anwar Hasan and published by Springer Science & Business Media. This book was released on 2010-06-17 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third International Workshop on the Arithmetic of Finite Fields, WAIFI 2010, held in Istanbul, Turkey, in June 2010. The 15 revised full papers presented were carefully reviewed and selected from 33 submissions. The papers are organized in topical sections on efficient finite field arithmetic, pseudo-random numbers and sequences, Boolean functions, functions, Equations and modular multiplication, finite field arithmetic for pairing based cryptography, and finite field, cryptography and coding.
Book Synopsis A Mathematical Introduction to Conformal Field Theory by : Martin Schottenloher
Download or read book A Mathematical Introduction to Conformal Field Theory written by Martin Schottenloher and published by Springer Science & Business Media. This book was released on 2008-09-15 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part I gives a detailed, self-contained and mathematically rigorous exposition of classical conformal symmetry in n dimensions and its quantization in two dimensions. The conformal groups are determined and the appearence of the Virasoro algebra in the context of the quantization of two-dimensional conformal symmetry is explained via the classification of central extensions of Lie algebras and groups. Part II surveys more advanced topics of conformal field theory such as the representation theory of the Virasoro algebra, conformal symmetry within string theory, an axiomatic approach to Euclidean conformally covariant quantum field theory and a mathematical interpretation of the Verlinde formula in the context of moduli spaces of holomorphic vector bundles on a Riemann surface.
Book Synopsis A Course in Arithmetic by : J-P. Serre
Download or read book A Course in Arithmetic written by J-P. Serre and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is divided into two parts. The first one is purely algebraic. Its objective is the classification of quadratic forms over the field of rational numbers (Hasse-Minkowski theorem). It is achieved in Chapter IV. The first three chapters contain some preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols. Chapter V applies the preceding results to integral quadratic forms of discriminant ± I. These forms occur in various questions: modular functions, differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor phic functions). Chapter VI gives the proof of the "theorem on arithmetic progressions" due to Dirichlet; this theorem is used at a critical point in the first part (Chapter Ill, no. 2.2). Chapter VII deals with modular forms, and in particular, with theta functions. Some of the quadratic forms of Chapter V reappear here. The two parts correspond to lectures given in 1962 and 1964 to second year students at the Ecole Normale Superieure. A redaction of these lectures in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-IV) and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to me; I extend here my gratitude to their authors.
Book Synopsis Arithmetic of Finite Fields by : Joachim von zur Gathen
Download or read book Arithmetic of Finite Fields written by Joachim von zur Gathen and published by Springer. This book was released on 2008-07-08 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second International Workshop on the Arithmetic of Finite Fields, WAIFI 2008, held in Siena, Italy, in July 2008. The 16 revised full papers presented were carefully reviewed and selected from 34 submissions. The papers are organized in topical sections on structures in finite fields, efficient finite field arithmetic, efficient implementation and architectures, classification and construction of mappings over finite fields, and codes and cryptography.
Download or read book Finite Fields written by Rudolf Lidl and published by Cambridge University Press. This book was released on 1997 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted entirely to the theory of finite fields.
Book Synopsis Algebraic Number Fields by : Gerald J. Janusz
Download or read book Algebraic Number Fields written by Gerald J. Janusz and published by American Mathematical Soc.. This book was released on 1996 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents the basic information about finite dimensional extension fields of the rational numbers, algebraic number fields, and the rings of algebraic integers in them. The important theorems regarding the units of the ring of integers and the class group are proved and illustrated with many examples given in detail. The completion of an algebraic number field at a valuation is discussed in detail and then used to provide economical proofs of global results. The book contains many concrete examples illustrating the computation of class groups, class numbers, and Hilbert class fields. Exercises are provided to indicate applications of the general theory.
Download or read book Field Theory written by Steven Roman and published by Springer. This book was released on 2013-12-20 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for graduate courses or for independent study, this book presents the basic theory of fields. The first part begins with a discussion of polynomials over a ring, the division algorithm, irreducibility, field extensions, and embeddings. The second part is devoted to Galois theory. The third part of the book treats the theory of binomials. The book concludes with a chapter on families of binomials - the Kummer theory.
Book Synopsis Cohomology of Number Fields by : Jürgen Neukirch
Download or read book Cohomology of Number Fields written by Jürgen Neukirch and published by Springer Science & Business Media. This book was released on 2013-09-26 with total page 831 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.