Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Exceptional Vector Bundles Tilting Sheaves And Tilting Complexes For Weighted Projective Lines
Download Exceptional Vector Bundles Tilting Sheaves And Tilting Complexes For Weighted Projective Lines full books in PDF, epub, and Kindle. Read online Exceptional Vector Bundles Tilting Sheaves And Tilting Complexes For Weighted Projective Lines ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Exceptional Vector Bundles, Tilting Sheaves and Tilting Complexes for Weighted Projective Lines by : Hagen Meltzer
Download or read book Exceptional Vector Bundles, Tilting Sheaves and Tilting Complexes for Weighted Projective Lines written by Hagen Meltzer and published by American Mathematical Soc.. This book was released on 2004 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deals with weighted projective lines, a class of non-commutative curves modelled by Geigle and Lenzing on a graded commutative sheaf theory. They play an important role in representation theory of finite-dimensional algebras; the complexity of the classification of coherent sheaves largely depends on the genus of these curves.
Book Synopsis Representation Theory of Geigle-Lenzing Complete Intersections by : Martin Herschend
Download or read book Representation Theory of Geigle-Lenzing Complete Intersections written by Martin Herschend and published by American Mathematical Society. This book was released on 2023-05-23 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: View the abstract. https://www.ams.org/bookstore/pspdf/memo-285-1412-abstract.pdf?
Book Synopsis Representations of Algebras and Related Topics by : Andrzej Skowroński
Download or read book Representations of Algebras and Related Topics written by Andrzej Skowroński and published by European Mathematical Society. This book was released on 2011 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, which explores recent trends in the representation theory of algebras and its exciting interaction with geometry, topology, commutative algebra, Lie algebras, combinatorics, quantum algebras, and theoretical field, is conceived as a handbook to provide easy access to the present state of knowledge and stimulate further development. The many topics discussed include quivers, quivers with potential, bound quiver algebras, Jacobian algebras, cluster algebras and categories, Calabi-Yau algebras and categories, triangulated and derived categories, and quantum loop algebras. This book consists of thirteen self-contained expository survey and research articles and is addressed to researchers and graduate students in algebra as well as a broader mathematical community. The articles contain a large number of examples and open problems and give new perspectives for research in the field.
Book Synopsis Noncommutative Curves of Genus Zero by : Dirk Kussin
Download or read book Noncommutative Curves of Genus Zero written by Dirk Kussin and published by American Mathematical Soc.. This book was released on 2009-08-07 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: In these notes the author investigates noncommutative smooth projective curves of genus zero, also called exceptional curves. As a main result he shows that each such curve $\mathbb{X}$ admits, up to some weighting, a projective coordinate algebra which is a not necessarily commutative graded factorial domain $R$ in the sense of Chatters and Jordan. Moreover, there is a natural bijection between the points of $\mathbb{X}$ and the homogeneous prime ideals of height one in $R$, and these prime ideals are principal in a strong sense.
Book Synopsis Infinite Dimensional Complex Symplectic Spaces by : William Norrie Everitt
Download or read book Infinite Dimensional Complex Symplectic Spaces written by William Norrie Everitt and published by American Mathematical Soc.. This book was released on 2004 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex symplectic spaces are non-trivial generalizations of the real symplectic spaces of classical analytical dynamics. This title presents a self-contained investigation of general complex symplectic spaces, and their Lagrangian subspaces, regardless of the finite or infinite dimensionality.
Book Synopsis Integrable Hamiltonian Systems on Complex Lie Groups by : Velimir Jurdjevic
Download or read book Integrable Hamiltonian Systems on Complex Lie Groups written by Velimir Jurdjevic and published by American Mathematical Soc.. This book was released on 2005 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studies the elastic problems on simply connected manifolds $M_n$ whose orthonormal frame bundle is a Lie group $G$. This title synthesizes ideas from optimal control theory, adapted to variational problems on the principal bundles of Riemannian spaces, and the symplectic geometry of the Lie algebra $\mathfrak{g}, $ of $G$
Book Synopsis The Complex Monge-Ampere Equation and Pluripotential Theory by : Sławomir Kołodziej
Download or read book The Complex Monge-Ampere Equation and Pluripotential Theory written by Sławomir Kołodziej and published by American Mathematical Soc.. This book was released on 2005 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: We collect here results on the existence and stability of weak solutions of complex Monge-Ampere equation proved by applying pluripotential theory methods and obtained in past three decades. First we set the stage introducing basic concepts and theorems of pluripotential theory. Then the Dirichlet problem for the complex Monge-Ampere equation is studied. The main goal is to give possibly detailed description of the nonnegative Borel measures which on the right hand side of the equation give rise to plurisubharmonic solutions satisfying additional requirements such as continuity, boundedness or some weaker ones. In the last part, the methods of pluripotential theory are implemented to prove the existence and stability of weak solutions of the complex Monge-Ampere equation on compact Kahler manifolds. This is a generalization of the Calabi-Yau theorem.
Book Synopsis Mutually Catalytic Super Branching Random Walks: Large Finite Systems and Renormalization Analysis by : J. T. Cox
Download or read book Mutually Catalytic Super Branching Random Walks: Large Finite Systems and Renormalization Analysis written by J. T. Cox and published by American Mathematical Soc.. This book was released on 2004 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studies the evolution of the large finite spatial systems in size-dependent time scales and compare them with the behavior of the infinite systems, which amounts to establishing the so-called finite system scheme. This title introduces the concept of a continuum limit in the hierarchical mean field limit.
Book Synopsis Locally Finite Root Systems by : Ottmar Loos
Download or read book Locally Finite Root Systems written by Ottmar Loos and published by American Mathematical Soc.. This book was released on 2004 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: We develop the basic theory of root systems $R$ in a real vector space $X$ which are defined in analogy to the usual finite root systems, except that finiteness is replaced by local finiteness: the intersection of $R$ with every finite-dimensional subspace of $X$ is finite. The main topics are Weyl groups, parabolic subsets and positive systems, weights, and gradings.
Book Synopsis Quasi-Ordinary Power Series and Their Zeta Functions by : Enrique Artal-Bartolo
Download or read book Quasi-Ordinary Power Series and Their Zeta Functions written by Enrique Artal-Bartolo and published by American Mathematical Soc.. This book was released on 2005-10-05 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function $Z_{\text{DL}}(h,T)$ of a quasi-ordinary power series $h$ of arbitrary dimension over an algebraically closed field of characteristic zero from its characteristic exponents without using embedded resolution of singularities. This allows us to effectively represent $Z_{\text{DL}}(h,T)=P(T)/Q(T)$ such that almost all the candidate poles given by $Q(T)$ are poles. Anyway, these candidate poles give eigenvalues of the monodromy action on the complex $R\psi_h$ of nearby cycles on $h^{-1}(0).$ In particular we prove in this case the monodromy conjecture made by Denef-Loeser for the local motivic zeta function and the local topological zeta function. As a consequence, if $h$ is a quasi-ordinary polynomial defined over a number field we prove the Igusa monodromy conjecture for its local Igusa zeta function.
Book Synopsis A Random Tiling Model for Two Dimensional Electrostatics by : Mihai Ciucu
Download or read book A Random Tiling Model for Two Dimensional Electrostatics written by Mihai Ciucu and published by American Mathematical Soc.. This book was released on 2005 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studies the correlation of holes in random lozenge (i.e., unit rhombus) tilings of the triangular lattice. This book analyzes the joint correlation of these triangular holes when their complement is tiled uniformly at random by lozenges.
Book Synopsis Lax-Phillips Scattering and Conservative Linear Systems: A Cuntz-Algebra Multidimensional Setting by : Joseph A. Ball
Download or read book Lax-Phillips Scattering and Conservative Linear Systems: A Cuntz-Algebra Multidimensional Setting written by Joseph A. Ball and published by American Mathematical Soc.. This book was released on 2005 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: The evolution operator for the Lax-Phillips scattering system is an isometric representation of the Cuntz algebra, while the nonnegative time axis for the conservative, linear system is the free semigroup on $d$ letters. This title presents a multivariable setting for Lax-Phillips scattering and for conservative, discrete-time, linear systems.
Book Synopsis Higher Complex Torsion and the Framing Principle by : Kiyoshi Igusa
Download or read book Higher Complex Torsion and the Framing Principle written by Kiyoshi Igusa and published by American Mathematical Soc.. This book was released on 2005 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intends to prove that higher Franz-Reidemeister (FR) torsion satisfies the transfer property and a formula known as the 'Framing Principle' in full generality. This title uses these properties to compute the higher FR-torsion for various smooth bundles with oriented closed even dimensional manifold fibers.
Book Synopsis Carleson Measures and Interpolating Sequences for Besov Spaces on Complex Balls by : Nicola Arcozzi
Download or read book Carleson Measures and Interpolating Sequences for Besov Spaces on Complex Balls written by Nicola Arcozzi and published by American Mathematical Soc.. This book was released on 2006 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: A tree structure for the unit ball $mathbb B? n$ in $mathbb C'n$; Carleson measures; Pointwise multipliers; Interpolating sequences; An almost invariant holomorphic derivative; Besov spaces on trees; Holomorphic Besov spaces on Bergman trees; Completing the multiplier interpolation loop; Appendix; Bibliography
Book Synopsis A Sharp Threshold for Random Graphs with a Monochromatic Triangle in Every Edge Coloring by : Ehud Friedgut
Download or read book A Sharp Threshold for Random Graphs with a Monochromatic Triangle in Every Edge Coloring written by Ehud Friedgut and published by American Mathematical Soc.. This book was released on 2006 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let $\cal{R}$ be the set of all finite graphs $G$ with the Ramsey property that every coloring of the edges of $G$ by two colors yields a monochromatic triangle. In this paper the authors establish a sharp threshold for random graphs with this property. Let $G(n, p)$ be the random graph on $n$ vertices with edge probability $p$. The authors prove that there exists a function $\widehat c=\widehat c(n)=\Theta(1)$ such that for any $\varepsilon > 0$, as $n$ tends to infinity, $Pr\left[G(n, (1-\varepsilon)\widehat c/\sqrt{n}) \in \cal{R} \right] \rightarrow 0$ and $Pr \left[ G(n, (1]\varepsilon)\widehat c/\sqrt{n}) \in \cal{R}\ \right] \rightarrow 1.$. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemeredi's Regularity Lemma to a certain hypergraph setti
Book Synopsis Kahler Spaces, Nilpotent Orbits, and Singular Reduction by : Johannes Huebschmann
Download or read book Kahler Spaces, Nilpotent Orbits, and Singular Reduction written by Johannes Huebschmann and published by American Mathematical Soc.. This book was released on 2004 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a stratified symplectic space, a suitable concept of stratified Kahler polarization encapsulates Kahler polarizations on the strata and the behaviour of the polarizations across the strata and leads to the notion of stratified Kahler space which establishes an intimate relationship between nilpotent orbits, singular reduction, invariant theory, reductive dual pairs, Jordan triple systems, symmetric domains, and pre-homogeneous spaces: The closure of a holomorphic nilpotent orbit or, equivalently, the closure of the stratum of the associated pre-homogeneous space of parabolic type carries a (positive) normal Kahler structure. In the world of singular Poisson geometry, the closures of principal holomorphic nilpotent orbits, positive definite hermitian JTS's, and certain pre-homogeneous spaces appear as different incarnations of the same structure. The closure of the principal holomorphic nilpotent orbit arises from a semisimple holomorphic orbit by contraction. Symplectic reduction carries a positive Kahler manifold to a positive normal Kahler space in such a way that the sheaf of germs of polarized functions coincides with the ordinary sheaf of germs of holomorphic functions. Symplectic reduction establishes a close relationship between singular reduced spaces and nilpotent orbits of the dual groups. Projectivization of holomorphic nilpotent orbits yields exotic (positive) stratified Kahler structures on complex projective spaces and on certain complex projective varieties including complex projective quadrics. The space of (in general twisted) representations of the fundamental group of a closed surface in a compact Lie group or, equivalently, a moduli space of central Yang-Mills connections on a principal bundle over a surface, inherits a (positive) normal (stratified) Kahler structure. Physical examples are provided by certain reduced spaces arising from angular momentum zero.
Book Synopsis Hilbert Modular Forms: mod $p$ and $p$-Adic Aspects by : Fabrizio Andreatta
Download or read book Hilbert Modular Forms: mod $p$ and $p$-Adic Aspects written by Fabrizio Andreatta and published by American Mathematical Soc.. This book was released on 2005 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: We study Hilbert modular forms in characteristic $p$ and over $p$-adic rings. In the characteristic $p$ theory we describe the kernel and image of the $q$-expansion map and prove the existence of filtration for Hilbert modular forms; we define operators $U$, $V$ and $\Theta_\chi$ and study the variation of the filtration under these operators. Our methods are geometric - comparing holomorphic Hilbert modular forms with rational functions on a moduli scheme with level-$p$ structure, whose poles are supported on the non-ordinary locus.In the $p$-adic theory we study congruences between Hilbert modular forms. This applies to the study of congruences between special values of zeta functions of totally real fields. It also allows us to define $p$-adic Hilbert modular forms 'a la Serre' as $p$-adic uniform limit of classical modular forms, and compare them with $p$-adic modular forms 'a la Katz' that are regular functions on a certain formal moduli scheme. We show that the two notions agree for cusp forms and for a suitable class of weights containing all the classical ones. We extend the operators $V$ and $\Theta_\chi$ to the $p$-adic setting.