Evolutionary Machine Learning Techniques

Download Evolutionary Machine Learning Techniques PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9813299908
Total Pages : 287 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Machine Learning Techniques by : Seyedali Mirjalili

Download or read book Evolutionary Machine Learning Techniques written by Seyedali Mirjalili and published by Springer Nature. This book was released on 2019-11-11 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.

Evolutionary Machine Learning Techniques

Download Evolutionary Machine Learning Techniques PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9789813299894
Total Pages : 286 pages
Book Rating : 4.2/5 (998 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Machine Learning Techniques by : Seyedali Mirjalili

Download or read book Evolutionary Machine Learning Techniques written by Seyedali Mirjalili and published by Springer. This book was released on 2019-11-25 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.

Evolutionary Approach to Machine Learning and Deep Neural Networks

Download Evolutionary Approach to Machine Learning and Deep Neural Networks PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811302006
Total Pages : 254 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Approach to Machine Learning and Deep Neural Networks by : Hitoshi Iba

Download or read book Evolutionary Approach to Machine Learning and Deep Neural Networks written by Hitoshi Iba and published by Springer. This book was released on 2018-06-15 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gröbner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields. Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution. The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot.

Evolutionary Algorithms and Neural Networks

Download Evolutionary Algorithms and Neural Networks PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319930257
Total Pages : 164 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Algorithms and Neural Networks by : Seyedali Mirjalili

Download or read book Evolutionary Algorithms and Neural Networks written by Seyedali Mirjalili and published by Springer. This book was released on 2018-06-26 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials.

Evolutionary Optimization Algorithms

Download Evolutionary Optimization Algorithms PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118659503
Total Pages : 776 pages
Book Rating : 4.1/5 (186 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Optimization Algorithms by : Dan Simon

Download or read book Evolutionary Optimization Algorithms written by Dan Simon and published by John Wiley & Sons. This book was released on 2013-06-13 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.

Evolutionary Learning Algorithms for Neural Adaptive Control

Download Evolutionary Learning Algorithms for Neural Adaptive Control PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1447109031
Total Pages : 214 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Learning Algorithms for Neural Adaptive Control by : Dimitris C. Dracopoulos

Download or read book Evolutionary Learning Algorithms for Neural Adaptive Control written by Dimitris C. Dracopoulos and published by Springer. This book was released on 2013-12-21 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary Learning Algorithms for Neural Adaptive Control is an advanced textbook, which investigates how neural networks and genetic algorithms can be applied to difficult adaptive control problems which conventional results are either unable to solve , or for which they can not provide satisfactory results. It focuses on the principles involved, rather than on the modelling of the applications themselves, and therefore provides the reader with a good introduction to the fundamental issues involved.

Handbook of Research on Applications and Implementations of Machine Learning Techniques

Download Handbook of Research on Applications and Implementations of Machine Learning Techniques PDF Online Free

Author :
Publisher : IGI Global, Engineering Science Reference
ISBN 13 : 9781522599029
Total Pages : 0 pages
Book Rating : 4.5/5 (99 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Research on Applications and Implementations of Machine Learning Techniques by : Sathiyamoorthi Velayutham

Download or read book Handbook of Research on Applications and Implementations of Machine Learning Techniques written by Sathiyamoorthi Velayutham and published by IGI Global, Engineering Science Reference. This book was released on 2019-07 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book examines the practical applications and implementation of various machine learning techniques in various fields such as agriculture, medical, image processing, and networking"--

Data-Driven Evolutionary Optimization

Download Data-Driven Evolutionary Optimization PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030746402
Total Pages : 393 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Evolutionary Optimization by : Yaochu Jin

Download or read book Data-Driven Evolutionary Optimization written by Yaochu Jin and published by Springer Nature. This book was released on 2021-06-28 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available. This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.

Evolutionary and Swarm Intelligence Algorithms

Download Evolutionary and Swarm Intelligence Algorithms PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319913417
Total Pages : 194 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary and Swarm Intelligence Algorithms by : Jagdish Chand Bansal

Download or read book Evolutionary and Swarm Intelligence Algorithms written by Jagdish Chand Bansal and published by Springer. This book was released on 2018-06-06 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a delight for academics, researchers and professionals working in evolutionary and swarm computing, computational intelligence, machine learning and engineering design, as well as search and optimization in general. It provides an introduction to the design and development of a number of popular and recent swarm and evolutionary algorithms with a focus on their applications in engineering problems in diverse domains. The topics discussed include particle swarm optimization, the artificial bee colony algorithm, Spider Monkey optimization algorithm, genetic algorithms, constrained multi-objective evolutionary algorithms, genetic programming, and evolutionary fuzzy systems. A friendly and informative treatment of the topics makes this book an ideal reference for beginners and those with experience alike.

Machine Learning for Evolution Strategies

Download Machine Learning for Evolution Strategies PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319333836
Total Pages : 120 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Evolution Strategies by : Oliver Kramer

Download or read book Machine Learning for Evolution Strategies written by Oliver Kramer and published by Springer. This book was released on 2016-05-25 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.

Data Mining and Knowledge Discovery with Evolutionary Algorithms

Download Data Mining and Knowledge Discovery with Evolutionary Algorithms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662049236
Total Pages : 272 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Data Mining and Knowledge Discovery with Evolutionary Algorithms by : Alex A. Freitas

Download or read book Data Mining and Knowledge Discovery with Evolutionary Algorithms written by Alex A. Freitas and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics

Evolutionary Algorithms

Download Evolutionary Algorithms PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1848218044
Total Pages : 258 pages
Book Rating : 4.8/5 (482 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Algorithms by : Alain Petrowski

Download or read book Evolutionary Algorithms written by Alain Petrowski and published by John Wiley & Sons. This book was released on 2017-04-24 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary algorithms are bio-inspired algorithms based on Darwin’s theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods. In six chapters, this book presents the essential knowledge required to efficiently implement evolutionary algorithms. Chapter 1 describes a generic evolutionary algorithm as well as the basic operators that compose it. Chapter 2 is devoted to the solving of continuous optimization problems, without constraint. Three leading approaches are described and compared on a set of test functions. Chapter 3 considers continuous optimization problems with constraints. Various approaches suitable for evolutionary methods are presented. Chapter 4 is related to combinatorial optimization. It provides a catalog of variation operators to deal with order-based problems. Chapter 5 introduces the basic notions required to understand the issue of multi-objective optimization and a variety of approaches for its application. Finally, Chapter 6 describes different approaches of genetic programming able to evolve computer programs in the context of machine learning.

The Master Algorithm

Download The Master Algorithm PDF Online Free

Author :
Publisher : Basic Books
ISBN 13 : 0465061923
Total Pages : 354 pages
Book Rating : 4.4/5 (65 download)

DOWNLOAD NOW!


Book Synopsis The Master Algorithm by : Pedro Domingos

Download or read book The Master Algorithm written by Pedro Domingos and published by Basic Books. This book was released on 2015-09-22 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recommended by Bill Gates A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.

Evolutionary Computation

Download Evolutionary Computation PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471749206
Total Pages : 294 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Computation by : David B. Fogel

Download or read book Evolutionary Computation written by David B. Fogel and published by John Wiley & Sons. This book was released on 2006-01-03 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Third Edition provides the latest tools and techniques that enable computers to learn The Third Edition of this internationally acclaimed publication provides the latest theory and techniques for using simulated evolution to achieve machine intelligence. As a leading advocate for evolutionary computation, the author has successfully challenged the traditional notion of artificial intelligence, which essentially programs human knowledge fact by fact, but does not have the capacity to learn or adapt as evolutionary computation does. Readers gain an understanding of the history of evolutionary computation, which provides a foundation for the author's thorough presentation of the latest theories shaping current research. Balancing theory with practice, the author provides readers with the skills they need to apply evolutionary algorithms that can solve many of today's intransigent problems by adapting to new challenges and learning from experience. Several examples are provided that demonstrate how these evolutionary algorithms learn to solve problems. In particular, the author provides a detailed example of how an algorithm is used to evolve strategies for playing chess and checkers. As readers progress through the publication, they gain an increasing appreciation and understanding of the relationship between learning and intelligence. Readers familiar with the previous editions will discover much new and revised material that brings the publication thoroughly up to date with the latest research, including the latest theories and empirical properties of evolutionary computation. The Third Edition also features new knowledge-building aids. Readers will find a host of new and revised examples. New questions at the end of each chapter enable readers to test their knowledge. Intriguing assignments that prepare readers to manage challenges in industry and research have been added to the end of each chapter as well. This is a must-have reference for professionals in computer and electrical engineering; it provides them with the very latest techniques and applications in machine intelligence. With its question sets and assignments, the publication is also recommended as a graduate-level textbook.

Evolutionary Optimization

Download Evolutionary Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0792376544
Total Pages : 416 pages
Book Rating : 4.7/5 (923 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Optimization by : Ruhul Sarker

Download or read book Evolutionary Optimization written by Ruhul Sarker and published by Springer Science & Business Media. This book was released on 2002-01-31 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of evolutionary computation techniques has grown considerably over the past several years. Over this time, the use and applications of these techniques have been further enhanced resulting in a set of computational intelligence (also known as modern heuristics) tools that are particularly adept for solving complex optimization problems. Moreover, they are characteristically more robust than traditional methods based on formal logics or mathematical programming for many real world OR/MS problems. Hence, evolutionary computation techniques have dealt with complex optimization problems better than traditional optimization techniques although they can be applied to easy and simple problems where conventional techniques work well. Clearly there is a need for a volume that both reviews state-of-the-art evolutionary computation techniques, and surveys the most recent developments in their use for solving complex OR/MS problems. This volume on Evolutionary Optimization seeks to fill this need. Evolutionary Optimization is a volume of invited papers written by leading researchers in the field. All papers were peer reviewed by at least two recognized reviewers. The book covers the foundation as well as the practical side of evolutionary optimization.

Genetic Algorithms + Data Structures = Evolution Programs

Download Genetic Algorithms + Data Structures = Evolution Programs PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662028301
Total Pages : 257 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Genetic Algorithms + Data Structures = Evolution Programs by : Zbigniew Michalewicz

Download or read book Genetic Algorithms + Data Structures = Evolution Programs written by Zbigniew Michalewicz and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'What does your Master teach?' asked a visitor. 'Nothing,' said the disciple. 'Then why does he give discourses?' 'He only points the way - he teaches nothing.' Anthony de Mello, One Minute Wisdom During the last three decades there has been a growing interest in algorithms which rely on analogies to natural processes. The emergence of massively par allel computers made these algorithms of practical interest. The best known algorithms in this class include evolutionary programming, genetic algorithms, evolution strategies, simulated annealing, classifier systems, and neural net works. Recently (1-3 October 1990) the University of Dortmund, Germany, hosted the First Workshop on Parallel Problem Solving from Nature [164]. This book discusses a subclass of these algorithms - those which are based on the principle of evolution (survival of the fittest). In such algorithms a popu lation of individuals (potential solutions) undergoes a sequence of unary (muta tion type) and higher order (crossover type) transformations. These individuals strive for survival: a selection scheme, biased towards fitter individuals, selects the next generation. After some number of generations, the program converges - the best individual hopefully represents the optimum solution. There are many different algorithms in this category. To underline the sim ilarities between them we use the common term "evolution programs" .

Genetic Algorithms in Search, Optimization, and Machine Learning

Download Genetic Algorithms in Search, Optimization, and Machine Learning PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 :
Total Pages : 436 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Genetic Algorithms in Search, Optimization, and Machine Learning by : David Edward Goldberg

Download or read book Genetic Algorithms in Search, Optimization, and Machine Learning written by David Edward Goldberg and published by Addison-Wesley Professional. This book was released on 1989 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.