Evolutionary Learning: Advances in Theories and Algorithms

Download Evolutionary Learning: Advances in Theories and Algorithms PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811359563
Total Pages : 361 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Learning: Advances in Theories and Algorithms by : Zhi-Hua Zhou

Download or read book Evolutionary Learning: Advances in Theories and Algorithms written by Zhi-Hua Zhou and published by Springer. This book was released on 2019-05-22 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many machine learning tasks involve solving complex optimization problems, such as working on non-differentiable, non-continuous, and non-unique objective functions; in some cases it can prove difficult to even define an explicit objective function. Evolutionary learning applies evolutionary algorithms to address optimization problems in machine learning, and has yielded encouraging outcomes in many applications. However, due to the heuristic nature of evolutionary optimization, most outcomes to date have been empirical and lack theoretical support. This shortcoming has kept evolutionary learning from being well received in the machine learning community, which favors solid theoretical approaches. Recently there have been considerable efforts to address this issue. This book presents a range of those efforts, divided into four parts. Part I briefly introduces readers to evolutionary learning and provides some preliminaries, while Part II presents general theoretical tools for the analysis of running time and approximation performance in evolutionary algorithms. Based on these general tools, Part III presents a number of theoretical findings on major factors in evolutionary optimization, such as recombination, representation, inaccurate fitness evaluation, and population. In closing, Part IV addresses the development of evolutionary learning algorithms with provable theoretical guarantees for several representative tasks, in which evolutionary learning offers excellent performance.

Recent Advances in Simulated Evolution and Learning

Download Recent Advances in Simulated Evolution and Learning PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 981256179X
Total Pages : 836 pages
Book Rating : 4.8/5 (125 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances in Simulated Evolution and Learning by : K. C. Tan

Download or read book Recent Advances in Simulated Evolution and Learning written by K. C. Tan and published by World Scientific. This book was released on 2004 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inspired by the Darwinian framework of evolution through natural selection and adaptation, the field of evolutionary computation has been growing very rapidly, and is today involved in many diverse application areas. This book covers the latest advances in the theories, algorithms, and applications of simulated evolution and learning techniques. It provides insights into different evolutionary computation techniques and their applications in domains such as scheduling, control and power, robotics, signal processing, and bioinformatics. The book will be of significant value to all postgraduates, research scientists and practitioners dealing with evolutionary computation or complex real-world problems. This book has been selected for coverage in: . OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). OCo CC Proceedings OCo Engineering & Physical Sciences. Sample Chapter(s). Chapter 1: Co-Evolutionary Learning in Strategic Environments (231 KB). Contents: Evolutionary Theory: Using Evolution to Learn User Preferences (S Ujjin & P J Bentley); Evolutionary Learning Strategies for Artificial Life Characters (M L Netto et al.); The Influence of Stochastic Quality Functions on Evolutionary Search (B Sendhoff et al.); A Real-Coded Cellular Genetic Algorithm Inspired by PredatorOCoPrey Interactions (X Li & S Sutherland); Automatic Modularization with Speciated Neural Network Ensemble (V R Khare & X Yao); Evolutionary Applications: Image Classification using Particle Swarm Optimization (M G Omran et al.); Evolution of Fuzzy Rule Based Controllers for Dynamic Environments (J Riley & V Ciesielski); A Genetic Algorithm for Joint Optimization of Spare Capacity and Delay in Self-Healing Network (S Kwong & H W Chong); Joint Attention in the Mimetic Context OCo What is a OC Mimetic SameOCO? (T Shiose et al.); Time Series Forecast with Elman Neural Networks and Genetic Algorithms (L X Xu et al.); and other articles. Readership: Upper level undergraduates, graduate students, academics, researchers and industrialists in artificial intelligence, evolutionary computation, fuzzy logic and neural networks."

Introduction to Evolutionary Computing

Download Introduction to Evolutionary Computing PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540401841
Total Pages : 328 pages
Book Rating : 4.4/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Evolutionary Computing by : A.E. Eiben

Download or read book Introduction to Evolutionary Computing written by A.E. Eiben and published by Springer Science & Business Media. This book was released on 2007-08-06 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.

Probably Approximately Correct

Download Probably Approximately Correct PDF Online Free

Author :
Publisher : Basic Books (AZ)
ISBN 13 : 0465032710
Total Pages : 210 pages
Book Rating : 4.4/5 (65 download)

DOWNLOAD NOW!


Book Synopsis Probably Approximately Correct by : Leslie Valiant

Download or read book Probably Approximately Correct written by Leslie Valiant and published by Basic Books (AZ). This book was released on 2013-06-04 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting a theory of the theoryless, a computer scientist provides a model of how effective behavior can be learned even in a world as complex as our own, shedding new light on human nature.

Modeling Applications and Theoretical Innovations in Interdisciplinary Evolutionary Computation

Download Modeling Applications and Theoretical Innovations in Interdisciplinary Evolutionary Computation PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1466636297
Total Pages : 357 pages
Book Rating : 4.4/5 (666 download)

DOWNLOAD NOW!


Book Synopsis Modeling Applications and Theoretical Innovations in Interdisciplinary Evolutionary Computation by : Samuelson Hong, Wei-Chiang

Download or read book Modeling Applications and Theoretical Innovations in Interdisciplinary Evolutionary Computation written by Samuelson Hong, Wei-Chiang and published by IGI Global. This book was released on 2013-03-31 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary computation has emerged as a major topic in the scientific community as many of its techniques have successfully been applied to solve problems in a wide variety of fields. Modeling Applications and Theoretical Innovations in Interdisciplinary Evolutionary Computation provides comprehensive research on emerging theories and its aspects on intelligent computation. Particularly focusing on breaking trends in evolutionary computing, algorithms, and programming, this publication serves to support professionals, government employees, policy and decision makers, as well as students in this scientific field.

Evolutionary Computation

Download Evolutionary Computation PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471749206
Total Pages : 294 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Computation by : David B. Fogel

Download or read book Evolutionary Computation written by David B. Fogel and published by John Wiley & Sons. This book was released on 2006-01-03 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Third Edition provides the latest tools and techniques that enable computers to learn The Third Edition of this internationally acclaimed publication provides the latest theory and techniques for using simulated evolution to achieve machine intelligence. As a leading advocate for evolutionary computation, the author has successfully challenged the traditional notion of artificial intelligence, which essentially programs human knowledge fact by fact, but does not have the capacity to learn or adapt as evolutionary computation does. Readers gain an understanding of the history of evolutionary computation, which provides a foundation for the author's thorough presentation of the latest theories shaping current research. Balancing theory with practice, the author provides readers with the skills they need to apply evolutionary algorithms that can solve many of today's intransigent problems by adapting to new challenges and learning from experience. Several examples are provided that demonstrate how these evolutionary algorithms learn to solve problems. In particular, the author provides a detailed example of how an algorithm is used to evolve strategies for playing chess and checkers. As readers progress through the publication, they gain an increasing appreciation and understanding of the relationship between learning and intelligence. Readers familiar with the previous editions will discover much new and revised material that brings the publication thoroughly up to date with the latest research, including the latest theories and empirical properties of evolutionary computation. The Third Edition also features new knowledge-building aids. Readers will find a host of new and revised examples. New questions at the end of each chapter enable readers to test their knowledge. Intriguing assignments that prepare readers to manage challenges in industry and research have been added to the end of each chapter as well. This is a must-have reference for professionals in computer and electrical engineering; it provides them with the very latest techniques and applications in machine intelligence. With its question sets and assignments, the publication is also recommended as a graduate-level textbook.

Theory of Evolutionary Computation

Download Theory of Evolutionary Computation PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030294145
Total Pages : 527 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Theory of Evolutionary Computation by : Benjamin Doerr

Download or read book Theory of Evolutionary Computation written by Benjamin Doerr and published by Springer Nature. This book was released on 2019-11-20 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book reports on recent developments in the theory of evolutionary computation, or more generally the domain of randomized search heuristics. It starts with two chapters on mathematical methods that are often used in the analysis of randomized search heuristics, followed by three chapters on how to measure the complexity of a search heuristic: black-box complexity, a counterpart of classical complexity theory in black-box optimization; parameterized complexity, aimed at a more fine-grained view of the difficulty of problems; and the fixed-budget perspective, which answers the question of how good a solution will be after investing a certain computational budget. The book then describes theoretical results on three important questions in evolutionary computation: how to profit from changing the parameters during the run of an algorithm; how evolutionary algorithms cope with dynamically changing or stochastic environments; and how population diversity influences performance. Finally, the book looks at three algorithm classes that have only recently become the focus of theoretical work: estimation-of-distribution algorithms; artificial immune systems; and genetic programming. Throughout the book the contributing authors try to develop an understanding for how these methods work, and why they are so successful in many applications. The book will be useful for students and researchers in theoretical computer science and evolutionary computing.

Hybrid Evolutionary Algorithms

Download Hybrid Evolutionary Algorithms PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540732977
Total Pages : 410 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Hybrid Evolutionary Algorithms by : Crina Grosan

Download or read book Hybrid Evolutionary Algorithms written by Crina Grosan and published by Springer. This book was released on 2007-08-29 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume is targeted at presenting the latest state-of-the-art methodologies in "Hybrid Evolutionary Algorithms". The chapters deal with the theoretical and methodological aspects, as well as various applications to many real world problems from science, technology, business or commerce. Overall, the book has 14 chapters including an introductory chapter giving the fundamental definitions and some important research challenges. The contributions were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.

Efficient Learning Machines

Download Efficient Learning Machines PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1430259906
Total Pages : 263 pages
Book Rating : 4.4/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Efficient Learning Machines by : Mariette Awad

Download or read book Efficient Learning Machines written by Mariette Awad and published by Apress. This book was released on 2015-04-27 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.

Recent Advances in Learning Automata

Download Recent Advances in Learning Automata PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319724282
Total Pages : 471 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances in Learning Automata by : Alireza Rezvanian

Download or read book Recent Advances in Learning Automata written by Alireza Rezvanian and published by Springer. This book was released on 2018-01-17 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects recent theoretical advances and concrete applications of learning automata (LAs) in various areas of computer science, presenting a broad treatment of the computer science field in a survey style. Learning automata (LAs) have proven to be effective decision-making agents, especially within unknown stochastic environments. The book starts with a brief explanation of LAs and their baseline variations. It subsequently introduces readers to a number of recently developed, complex structures used to supplement LAs, and describes their steady-state behaviors. These complex structures have been developed because, by design, LAs are simple units used to perform simple tasks; their full potential can only be tapped when several interconnected LAs cooperate to produce a group synergy. In turn, the next part of the book highlights a range of LA-based applications in diverse computer science domains, from wireless sensor networks, to peer-to-peer networks, to complex social networks, and finally to Petri nets. The book accompanies the reader on a comprehensive journey, starting from basic concepts, continuing to recent theoretical findings, and ending in the applications of LAs in problems from numerous research domains. As such, the book offers a valuable resource for all computer engineers, scientists, and students, especially those whose work involves the reinforcement learning and artificial intelligence domains.

Information Theory, Inference and Learning Algorithms

Download Information Theory, Inference and Learning Algorithms PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521642989
Total Pages : 694 pages
Book Rating : 4.6/5 (429 download)

DOWNLOAD NOW!


Book Synopsis Information Theory, Inference and Learning Algorithms by : David J. C. MacKay

Download or read book Information Theory, Inference and Learning Algorithms written by David J. C. MacKay and published by Cambridge University Press. This book was released on 2003-09-25 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

Multi-Objective Optimization using Evolutionary Algorithms

Download Multi-Objective Optimization using Evolutionary Algorithms PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780471873396
Total Pages : 540 pages
Book Rating : 4.8/5 (733 download)

DOWNLOAD NOW!


Book Synopsis Multi-Objective Optimization using Evolutionary Algorithms by : Kalyanmoy Deb

Download or read book Multi-Objective Optimization using Evolutionary Algorithms written by Kalyanmoy Deb and published by John Wiley & Sons. This book was released on 2001-07-05 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.

Human and Machine Learning

Download Human and Machine Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319904035
Total Pages : 485 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Human and Machine Learning by : Jianlong Zhou

Download or read book Human and Machine Learning written by Jianlong Zhou and published by Springer. This book was released on 2018-06-07 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: With an evolutionary advancement of Machine Learning (ML) algorithms, a rapid increase of data volumes and a significant improvement of computation powers, machine learning becomes hot in different applications. However, because of the nature of “black-box” in ML methods, ML still needs to be interpreted to link human and machine learning for transparency and user acceptance of delivered solutions. This edited book addresses such links from the perspectives of visualisation, explanation, trustworthiness and transparency. The book establishes the link between human and machine learning by exploring transparency in machine learning, visual explanation of ML processes, algorithmic explanation of ML models, human cognitive responses in ML-based decision making, human evaluation of machine learning and domain knowledge in transparent ML applications. This is the first book of its kind to systematically understand the current active research activities and outcomes related to human and machine learning. The book will not only inspire researchers to passionately develop new algorithms incorporating human for human-centred ML algorithms, resulting in the overall advancement of ML, but also help ML practitioners proactively use ML outputs for informative and trustworthy decision making. This book is intended for researchers and practitioners involved with machine learning and its applications. The book will especially benefit researchers in areas like artificial intelligence, decision support systems and human-computer interaction.

Genetic Algorithms in Search, Optimization, and Machine Learning

Download Genetic Algorithms in Search, Optimization, and Machine Learning PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 :
Total Pages : 436 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Genetic Algorithms in Search, Optimization, and Machine Learning by : David Edward Goldberg

Download or read book Genetic Algorithms in Search, Optimization, and Machine Learning written by David Edward Goldberg and published by Addison-Wesley Professional. This book was released on 1989 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.

Evolutionary Algorithms for Solving Multi-Objective Problems

Download Evolutionary Algorithms for Solving Multi-Objective Problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387367977
Total Pages : 810 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Algorithms for Solving Multi-Objective Problems by : Carlos Coello Coello

Download or read book Evolutionary Algorithms for Solving Multi-Objective Problems written by Carlos Coello Coello and published by Springer Science & Business Media. This book was released on 2007-08-26 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.

Ensemble Methods

Download Ensemble Methods PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439830037
Total Pages : 238 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Ensemble Methods by : Zhi-Hua Zhou

Download or read book Ensemble Methods written by Zhi-Hua Zhou and published by CRC Press. This book was released on 2012-06-06 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, self-contained introduction to a state-of-the-art machine learning approach, Ensemble Methods: Foundations and Algorithms shows how these accurate methods are used in real-world tasks. It gives you the necessary groundwork to carry out further research in this evolving field. After presenting background and terminology, the book covers the main algorithms and theories, including Boosting, Bagging, Random Forest, averaging and voting schemes, the Stacking method, mixture of experts, and diversity measures. It also discusses multiclass extension, noise tolerance, error-ambiguity and bias-variance decompositions, and recent progress in information theoretic diversity. Moving on to more advanced topics, the author explains how to achieve better performance through ensemble pruning and how to generate better clustering results by combining multiple clusterings. In addition, he describes developments of ensemble methods in semi-supervised learning, active learning, cost-sensitive learning, class-imbalance learning, and comprehensibility enhancement.

Reinforcement Learning, second edition

Download Reinforcement Learning, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262352702
Total Pages : 549 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning, second edition by : Richard S. Sutton

Download or read book Reinforcement Learning, second edition written by Richard S. Sutton and published by MIT Press. This book was released on 2018-11-13 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.