Estimation of Distribution Algorithms

Download Estimation of Distribution Algorithms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780792374664
Total Pages : 424 pages
Book Rating : 4.3/5 (746 download)

DOWNLOAD NOW!


Book Synopsis Estimation of Distribution Algorithms by : Pedro Larrañaga

Download or read book Estimation of Distribution Algorithms written by Pedro Larrañaga and published by Springer Science & Business Media. This book was released on 2001-10-31 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is devoted to a new paradigm for evolutionary computation, named estimation of distribution algorithms (EDAs). This new class of algorithms generalizes genetic algorithms by replacing the crossover and mutation operators with learning and sampling from the probability distribution of the best individuals of the population at each iteration of the algorithm. Working in such a way, the relationships between the variables involved in the problem domain are explicitly and effectively captured and exploited. This text constitutes the first compilation and review of the techniques and applications of this new tool for performing evolutionary computation. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is clearly divided into three parts. Part I is dedicated to the foundations of EDAs. In this part, after introducing some probabilistic graphical models - Bayesian and Gaussian networks - a review of existing EDA approaches is presented, as well as some new methods based on more flexible probabilistic graphical models. A mathematical modeling of discrete EDAs is also presented. Part II covers several applications of EDAs in some classical optimization problems: the travelling salesman problem, the job scheduling problem, and the knapsack problem. EDAs are also applied to the optimization of some well-known combinatorial and continuous functions. Part III presents the application of EDAs to solve some problems that arise in the machine learning field: feature subset selection, feature weighting in K-NN classifiers, rule induction, partial abductive inference in Bayesian networks, partitional clustering, and the search for optimal weights in artificial neural networks. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is a useful and interesting tool for researchers working in the field of evolutionary computation and for engineers who face real-world optimization problems. This book may also be used by graduate students and researchers in computer science. `... I urge those who are interested in EDAs to study this well-crafted book today.' David E. Goldberg, University of Illinois Champaign-Urbana.

Theory of Evolutionary Computation

Download Theory of Evolutionary Computation PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030294145
Total Pages : 527 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Theory of Evolutionary Computation by : Benjamin Doerr

Download or read book Theory of Evolutionary Computation written by Benjamin Doerr and published by Springer Nature. This book was released on 2019-11-20 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book reports on recent developments in the theory of evolutionary computation, or more generally the domain of randomized search heuristics. It starts with two chapters on mathematical methods that are often used in the analysis of randomized search heuristics, followed by three chapters on how to measure the complexity of a search heuristic: black-box complexity, a counterpart of classical complexity theory in black-box optimization; parameterized complexity, aimed at a more fine-grained view of the difficulty of problems; and the fixed-budget perspective, which answers the question of how good a solution will be after investing a certain computational budget. The book then describes theoretical results on three important questions in evolutionary computation: how to profit from changing the parameters during the run of an algorithm; how evolutionary algorithms cope with dynamically changing or stochastic environments; and how population diversity influences performance. Finally, the book looks at three algorithm classes that have only recently become the focus of theoretical work: estimation-of-distribution algorithms; artificial immune systems; and genetic programming. Throughout the book the contributing authors try to develop an understanding for how these methods work, and why they are so successful in many applications. The book will be useful for students and researchers in theoretical computer science and evolutionary computing.

Scalable Optimization via Probabilistic Modeling

Download Scalable Optimization via Probabilistic Modeling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540349537
Total Pages : 363 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Scalable Optimization via Probabilistic Modeling by : Martin Pelikan

Download or read book Scalable Optimization via Probabilistic Modeling written by Martin Pelikan and published by Springer Science & Business Media. This book was released on 2006-09-25 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading public under a misleading or fraudulent title. The volume Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications is a worthy addition to your library because it succeeds on exactly those dimensions where so many edited volumes fail. For example, take the title, Scalable Optimization via Probabilistic M- eling: From Algorithms to Applications. You need not worry that you’re going to pick up this book and ?nd stray articles about anything else. This book focuseslikealaserbeamononeofthehottesttopicsinevolutionary compu- tion over the last decade or so: estimation of distribution algorithms (EDAs). EDAs borrow evolutionary computation’s population orientation and sel- tionism and throw out the genetics to give us a hybrid of substantial power, elegance, and extensibility. The article sequencing in most edited volumes is hard to understand, but from the get go the editors of this volume have assembled a set of articles sequenced in a logical fashion. The book moves from design to e?ciency enhancement and then concludes with relevant applications. The emphasis on e?ciency enhancement is particularly important, because the data-mining perspectiveimplicitinEDAsopensuptheworldofoptimizationtonewme- ods of data-guided adaptation that can further speed solutions through the construction and utilization of e?ective surrogates, hybrids, and parallel and temporal decompositions.

Parallel Problem Solving from Nature-PPSN VI

Download Parallel Problem Solving from Nature-PPSN VI PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540410562
Total Pages : 920 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Parallel Problem Solving from Nature-PPSN VI by : Marc Schoenauer

Download or read book Parallel Problem Solving from Nature-PPSN VI written by Marc Schoenauer and published by Springer Science & Business Media. This book was released on 2000-09-06 with total page 920 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 6th International Conference on Parallel Problem Solving from Nature, PPSN VI, held in Paris, France in September 2000. The 87 revised full papers presented together with two invited papers were carefully reviewed and selected from 168 submissions. The presentations are organized in topical sections on analysis and theory of evolutionary algorithms, genetic programming, scheduling, representations and operators, co-evolution, constraint handling techniques, noisy and non-stationary environments, combinatorial optimization, applications, machine learning and classifier systems, new algorithms and metaphors, and multiobjective optimization.

Fog Computing

Download Fog Computing PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119551692
Total Pages : 616 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Fog Computing by : Assad Abbas

Download or read book Fog Computing written by Assad Abbas and published by John Wiley & Sons. This book was released on 2020-04-21 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summarizes the current state and upcoming trends within the area of fog computing Written by some of the leading experts in the field, Fog Computing: Theory and Practice focuses on the technological aspects of employing fog computing in various application domains, such as smart healthcare, industrial process control and improvement, smart cities, and virtual learning environments. In addition, the Machine-to-Machine (M2M) communication methods for fog computing environments are covered in depth. Presented in two parts—Fog Computing Systems and Architectures, and Fog Computing Techniques and Application—this book covers such important topics as energy efficiency and Quality of Service (QoS) issues, reliability and fault tolerance, load balancing, and scheduling in fog computing systems. It also devotes special attention to emerging trends and the industry needs associated with utilizing the mobile edge computing, Internet of Things (IoT), resource and pricing estimation, and virtualization in the fog environments. Includes chapters on deep learning, mobile edge computing, smart grid, and intelligent transportation systems beyond the theoretical and foundational concepts Explores real-time traffic surveillance from video streams and interoperability of fog computing architectures Presents the latest research on data quality in the IoT, privacy, security, and trust issues in fog computing Fog Computing: Theory and Practice provides a platform for researchers, practitioners, and graduate students from computer science, computer engineering, and various other disciplines to gain a deep understanding of fog computing.

Estimation of Distribution Algorithms

Download Estimation of Distribution Algorithms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461515394
Total Pages : 398 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Estimation of Distribution Algorithms by : Pedro Larrañaga

Download or read book Estimation of Distribution Algorithms written by Pedro Larrañaga and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is devoted to a new paradigm for evolutionary computation, named estimation of distribution algorithms (EDAs). This new class of algorithms generalizes genetic algorithms by replacing the crossover and mutation operators with learning and sampling from the probability distribution of the best individuals of the population at each iteration of the algorithm. Working in such a way, the relationships between the variables involved in the problem domain are explicitly and effectively captured and exploited. This text constitutes the first compilation and review of the techniques and applications of this new tool for performing evolutionary computation. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is clearly divided into three parts. Part I is dedicated to the foundations of EDAs. In this part, after introducing some probabilistic graphical models - Bayesian and Gaussian networks - a review of existing EDA approaches is presented, as well as some new methods based on more flexible probabilistic graphical models. A mathematical modeling of discrete EDAs is also presented. Part II covers several applications of EDAs in some classical optimization problems: the travelling salesman problem, the job scheduling problem, and the knapsack problem. EDAs are also applied to the optimization of some well-known combinatorial and continuous functions. Part III presents the application of EDAs to solve some problems that arise in the machine learning field: feature subset selection, feature weighting in K-NN classifiers, rule induction, partial abductive inference in Bayesian networks, partitional clustering, and the search for optimal weights in artificial neural networks. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is a useful and interesting tool for researchers working in the field of evolutionary computation and for engineers who face real-world optimization problems. This book may also be used by graduate students and researchers in computer science. `... I urge those who are interested in EDAs to study this well-crafted book today.' David E. Goldberg, University of Illinois Champaign-Urbana.

Springer Handbook of Computational Intelligence

Download Springer Handbook of Computational Intelligence PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3662435055
Total Pages : 1637 pages
Book Rating : 4.6/5 (624 download)

DOWNLOAD NOW!


Book Synopsis Springer Handbook of Computational Intelligence by : Janusz Kacprzyk

Download or read book Springer Handbook of Computational Intelligence written by Janusz Kacprzyk and published by Springer. This book was released on 2015-05-28 with total page 1637 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Springer Handbook for Computational Intelligence is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of computational intelligence. This comprehensive handbook makes readers familiar with a broad spectrum of approaches to solve various problems in science and technology. Possible approaches include, for example, those being inspired by biology, living organisms and animate systems. Content is organized in seven parts: foundations; fuzzy logic; rough sets; evolutionary computation; neural networks; swarm intelligence and hybrid computational intelligence systems. Each Part is supervised by its own Part Editor(s) so that high-quality content as well as completeness are assured.

Towards a New Evolutionary Computation

Download Towards a New Evolutionary Computation PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540324941
Total Pages : 306 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Towards a New Evolutionary Computation by : Jose A. Lozano

Download or read book Towards a New Evolutionary Computation written by Jose A. Lozano and published by Springer. This book was released on 2006-01-21 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Estimation of Distribution Algorithms (EDAs) are a set of algorithms in the Evolutionary Computation (EC) field characterized by the use of explicit probability distributions in optimization. Contrarily to other EC techniques such as the broadly known Genetic Algorithms (GAs) in EDAs, the crossover and mutation operators are substituted by the sampling of a distribution previously learnt from the selected individuals. EDAs have experienced a high development that has transformed them into an established discipline within the EC field. This book attracts the interest of new researchers in the EC field as well as in other optimization disciplines, and that it becomes a reference for all of us working on this topic. The twelve chapters of this book can be divided into those that endeavor to set a sound theoretical basis for EDAs, those that broaden the methodology of EDAs and finally those that have an applied objective.

Cellular Genetic Algorithms

Download Cellular Genetic Algorithms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387776109
Total Pages : 251 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Cellular Genetic Algorithms by : Enrique Alba

Download or read book Cellular Genetic Algorithms written by Enrique Alba and published by Springer Science & Business Media. This book was released on 2009-04-05 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cellular Genetic Algorithms defines a new class of optimization algorithms based on the concepts of structured populations and Genetic Algorithms (GAs). The authors explain and demonstrate the validity of these cellular genetic algorithms throughout the book with equal and parallel emphasis on both theory and practice. This book is a key source for studying and designing cellular GAs, as well as a self-contained primary reference book for these algorithms.

Beyond the Worst-Case Analysis of Algorithms

Download Beyond the Worst-Case Analysis of Algorithms PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108494315
Total Pages : 705 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Beyond the Worst-Case Analysis of Algorithms by : Tim Roughgarden

Download or read book Beyond the Worst-Case Analysis of Algorithms written by Tim Roughgarden and published by Cambridge University Press. This book was released on 2021-01-14 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces exciting new methods for assessing algorithms for problems ranging from clustering to linear programming to neural networks.

Theory of Randomized Search Heuristics

Download Theory of Randomized Search Heuristics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814282669
Total Pages : 370 pages
Book Rating : 4.8/5 (142 download)

DOWNLOAD NOW!


Book Synopsis Theory of Randomized Search Heuristics by : Anne Auger

Download or read book Theory of Randomized Search Heuristics written by Anne Auger and published by World Scientific. This book was released on 2011 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume covers both classical results and the most recent theoretical developments in the field of randomized search heuristics such as runtime analysis, drift analysis and convergence.

Algorithms for Decision Making

Download Algorithms for Decision Making PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262370239
Total Pages : 701 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Algorithms for Decision Making by : Mykel J. Kochenderfer

Download or read book Algorithms for Decision Making written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2022-08-16 with total page 701 pages. Available in PDF, EPUB and Kindle. Book excerpt: A broad introduction to algorithms for decision making under uncertainty, introducing the underlying mathematical problem formulations and the algorithms for solving them. Automated decision-making systems or decision-support systems—used in applications that range from aircraft collision avoidance to breast cancer screening—must be designed to account for various sources of uncertainty while carefully balancing multiple objectives. This textbook provides a broad introduction to algorithms for decision making under uncertainty, covering the underlying mathematical problem formulations and the algorithms for solving them. The book first addresses the problem of reasoning about uncertainty and objectives in simple decisions at a single point in time, and then turns to sequential decision problems in stochastic environments where the outcomes of our actions are uncertain. It goes on to address model uncertainty, when we do not start with a known model and must learn how to act through interaction with the environment; state uncertainty, in which we do not know the current state of the environment due to imperfect perceptual information; and decision contexts involving multiple agents. The book focuses primarily on planning and reinforcement learning, although some of the techniques presented draw on elements of supervised learning and optimization. Algorithms are implemented in the Julia programming language. Figures, examples, and exercises convey the intuition behind the various approaches presented.

Learning in Graphical Models

Download Learning in Graphical Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401150141
Total Pages : 658 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Learning in Graphical Models by : M.I. Jordan

Download or read book Learning in Graphical Models written by M.I. Jordan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists.

Spectral Algorithms

Download Spectral Algorithms PDF Online Free

Author :
Publisher : Now Publishers Inc
ISBN 13 : 1601982747
Total Pages : 153 pages
Book Rating : 4.6/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Spectral Algorithms by : Ravindran Kannan

Download or read book Spectral Algorithms written by Ravindran Kannan and published by Now Publishers Inc. This book was released on 2009 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral methods refer to the use of eigenvalues, eigenvectors, singular values and singular vectors. They are widely used in Engineering, Applied Mathematics and Statistics. More recently, spectral methods have found numerous applications in Computer Science to "discrete" as well as "continuous" problems. Spectral Algorithms describes modern applications of spectral methods, and novel algorithms for estimating spectral parameters. The first part of the book presents applications of spectral methods to problems from a variety of topics including combinatorial optimization, learning and clustering. The second part of the book is motivated by efficiency considerations. A feature of many modern applications is the massive amount of input data. While sophisticated algorithms for matrix computations have been developed over a century, a more recent development is algorithms based on "sampling on the fly" from massive matrices. Good estimates of singular values and low rank approximations of the whole matrix can be provably derived from a sample. The main emphasis in the second part of the book is to present these sampling methods with rigorous error bounds. It also presents recent extensions of spectral methods from matrices to tensors and their applications to some combinatorial optimization problems.

Introduction to Evolutionary Computing

Download Introduction to Evolutionary Computing PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540401841
Total Pages : 328 pages
Book Rating : 4.4/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Evolutionary Computing by : A.E. Eiben

Download or read book Introduction to Evolutionary Computing written by A.E. Eiben and published by Springer Science & Business Media. This book was released on 2007-08-06 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.

The Design of Innovation

Download The Design of Innovation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475736436
Total Pages : 259 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis The Design of Innovation by : David E. Goldberg

Download or read book The Design of Innovation written by David E. Goldberg and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: 7 69 6 A DESIGN APPROACH TO PROBLEM DIFFICULTY 71 1 Design and Problem Difficulty 71 2 Three Misconceptions 72 3 Hard Problems Exist 76 4 The 3-Way Decomposition and Its Core 77 The Core of Intra-BB Difficulty: Deception 5 77 6 The Core of Inter-BB Difficulty: Scaling 83 7 The Core of Extra-BB Difficulty: Noise 88 Crosstalk: All Roads Lead to the Core 8 89 9 From Multimodality to Hierarchy 93 10 Summary 100 7 ENSURING BUILDING BLOCK SUPPLY 101 1 Past Work 101 2 Facetwise Supply Model I: One BB 102 Facetwise Supply Model II: Partition Success 103 3 4 Population Size for BB Supply 104 Summary 5 106 8 ENSURING BUILDING BLOCK GROWTH 109 1 The Schema Theorem: BB Growth Bound 109 2 Schema Growth Somewhat More Generally 111 3 Designing for BB Market Share Growth 112 4 Selection Press ure for Early Success 114 5 Designing for Late in the Day 116 The Schema Theorem Works 6 118 A Demonstration of Selection Stall 7 119 Summary 122 8 9 MAKING TIME FOR BUILDING BLOCKS 125 1 Analysis of Selection Alone: Takeover Time 126 2 Drift: When Selection Chooses for No Reason 129 3 Convergence Times with Multiple BBs 132 4 A Time-Scales Derivation of Critical Locus 142 5 A Little Model of Noise-Induced Run Elongation 143 6 From Alleles to Building Blocks 147 7 Summary 148 10 DECIDING WELL 151 1 Why is Decision Making a Problem? 151

Nonparametric Econometrics

Download Nonparametric Econometrics PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400841062
Total Pages : 769 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Econometrics by : Qi Li

Download or read book Nonparametric Econometrics written by Qi Li and published by Princeton University Press. This book was released on 2011-10-09 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.