Ergodic Theory of Expanding Thurston Maps

Download Ergodic Theory of Expanding Thurston Maps PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9462391742
Total Pages : 190 pages
Book Rating : 4.4/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Ergodic Theory of Expanding Thurston Maps by : Zhiqiang Li

Download or read book Ergodic Theory of Expanding Thurston Maps written by Zhiqiang Li and published by Springer. This book was released on 2017-04-06 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thurston maps are topological generalizations of postcritically-finite rational maps. This book provides a comprehensive study of ergodic theory of expanding Thurston maps, focusing on the measure of maximal entropy, as well as a more general class of invariant measures, called equilibrium states, and certain weak expansion properties of such maps. In particular, we present equidistribution results for iterated preimages and periodic points with respect to the unique measure of maximal entropy by investigating the number and locations of fixed points. We then use the thermodynamical formalism to establish the existence, uniqueness, and various other properties of the equilibrium state for a Holder continuous potential on the sphere equipped with a visual metric. After studying some weak expansion properties of such maps, we obtain certain large deviation principles for iterated preimages and periodic points under an additional assumption on the critical orbits of the maps. This enables us to obtain general equidistribution results for such points with respect to the equilibrium states under the same assumption.

Expanding Thurston Maps

Download Expanding Thurston Maps PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 082187554X
Total Pages : 497 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Expanding Thurston Maps by : Mario Bonk

Download or read book Expanding Thurston Maps written by Mario Bonk and published by American Mathematical Soc.. This book was released on 2017-11-28 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to the study of the dynamics of expanding Thurston maps under iteration. A Thurston map is a branched covering map on a two-dimensional topological sphere such that each critical point of the map has a finite orbit under iteration. It is called expanding if, roughly speaking, preimages of a fine open cover of the underlying sphere under iterates of the map become finer and finer as the order of the iterate increases. Every expanding Thurston map gives rise to a fractal space, called its visual sphere. Many dynamical properties of the map are encoded in the geometry of this visual sphere. For example, an expanding Thurston map is topologically conjugate to a rational map if and only if its visual sphere is quasisymmetrically equivalent to the Riemann sphere. This relation between dynamics and fractal geometry is the main focus for the investigations in this work. The book is an introduction to the subject. The prerequisites for the reader are modest and include some basic knowledge of complex analysis and topology. The book has an extensive appendix, where background material is reviewed such as orbifolds and branched covering maps.

Nilpotent Structures in Ergodic Theory

Download Nilpotent Structures in Ergodic Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470447800
Total Pages : 442 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Nilpotent Structures in Ergodic Theory by : Bernard Host

Download or read book Nilpotent Structures in Ergodic Theory written by Bernard Host and published by American Mathematical Soc.. This book was released on 2018-12-12 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nilsystems play a key role in the structure theory of measure preserving systems, arising as the natural objects that describe the behavior of multiple ergodic averages. This book is a comprehensive treatment of their role in ergodic theory, covering development of the abstract theory leading to the structural statements, applications of these results, and connections to other fields. Starting with a summary of the relevant dynamical background, the book methodically develops the theory of cubic structures that give rise to nilpotent groups and reviews results on nilsystems and their properties that are scattered throughout the literature. These basic ingredients lay the groundwork for the ergodic structure theorems, and the book includes numerous formulations of these deep results, along with detailed proofs. The structure theorems have many applications, both in ergodic theory and in related fields; the book develops the connections to topological dynamics, combinatorics, and number theory, including an overview of the role of nilsystems in each of these areas. The final section is devoted to applications of the structure theory, covering numerous convergence and recurrence results. The book is aimed at graduate students and researchers in ergodic theory, along with those who work in the related areas of arithmetic combinatorics, harmonic analysis, and number theory.

Smooth Ergodic Theory and Its Applications

Download Smooth Ergodic Theory and Its Applications PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821826824
Total Pages : 895 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Smooth Ergodic Theory and Its Applications by : A. B. Katok

Download or read book Smooth Ergodic Theory and Its Applications written by A. B. Katok and published by American Mathematical Soc.. This book was released on 2001 with total page 895 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past decade, there have been several major new developments in smooth ergodic theory, which have attracted substantial interest to the field from mathematicians as well as scientists using dynamics in their work. In spite of the impressive literature, it has been extremely difficult for a student-or even an established mathematician who is not an expert in the area-to acquire a working knowledge of smooth ergodic theory and to learn how to use its tools. Accordingly, the AMS Summer Research Institute on Smooth Ergodic Theory and Its Applications (Seattle, WA) had a strong educational component, including ten mini-courses on various aspects of the topic that were presented by leading experts in the field. This volume presents the proceedings of that conference. Smooth ergodic theory studies the statistical properties of differentiable dynamical systems, whose origin traces back to the seminal works of Poincare and later, many great mathematicians who made contributions to the development of the theory. The main topic of this volume, smooth ergodic theory, especially the theory of nonuniformly hyperbolic systems, provides the principle paradigm for the rigorous study of complicated or chaotic behavior in deterministic systems. This paradigm asserts that if a non-linear dynamical system exhibits sufficiently pronounced exponential behavior, then global properties of the system can be deduced from studying the linearized system. One can then obtain detailed information on topological properties (such as the growth of periodic orbits, topological entropy, and dimension of invariant sets including attractors), as well as statistical properties (such as the existence of invariant measures, asymptotic behavior of typical orbits, ergodicity, mixing, decay of corre This volume serves a two-fold purpose: first, it gives a useful gateway to smooth ergodic theory for students and nonspecialists, and second, it provides a state-of-the-art report on important current aspects of the subject. The book is divided into three parts: lecture notes consisting of three long expositions with proofs aimed to serve as a comprehensive and self-contained introduction to a particular area of smooth ergodic theory; thematic sections based on mini-courses or surveys held at the conference; and original contributions presented at the meeting or closely related to the topics that were discussed there.

Recent Developments in Fractal Geometry and Dynamical Systems

Download Recent Developments in Fractal Geometry and Dynamical Systems PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470472163
Total Pages : 270 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Recent Developments in Fractal Geometry and Dynamical Systems by : Sangita Jha

Download or read book Recent Developments in Fractal Geometry and Dynamical Systems written by Sangita Jha and published by American Mathematical Society. This book was released on 2024-04-18 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the virtual AMS Special Session on Fractal Geometry and Dynamical Systems, held from May 14–15, 2022. The content covers a wide range of topics. It includes nonautonomous dynamics of complex polynomials, theory and applications of polymorphisms, topological and geometric problems related to dynamical systems, and also covers fractal dimensions, including the Hausdorff dimension of fractal interpolation functions. Furthermore, the book contains a discussion of self-similar measures as well as the theory of IFS measures associated with Bratteli diagrams. This book is suitable for graduate students interested in fractal theory, researchers interested in fractal geometry and dynamical systems, and anyone interested in the application of fractals in science and engineering. This book also offers a valuable resource for researchers working on applications of fractals in different fields.

Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems

Download Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642565891
Total Pages : 816 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems by : Bernold Fiedler

Download or read book Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems written by Bernold Fiedler and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting very recent results in a major research area, this book is addressed to experts and non-experts in the mathematical community alike. The applied issues range from crystallization and dendrite growth to quantum chaos, conveying their significance far into the neighboring disciplines of science.

In the Tradition of Thurston II

Download In the Tradition of Thurston II PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030975606
Total Pages : 525 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis In the Tradition of Thurston II by : Ken’ichi Ohshika

Download or read book In the Tradition of Thurston II written by Ken’ichi Ohshika and published by Springer Nature. This book was released on 2022-08-02 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this volume and of the other volumes in the same series is to provide a collection of surveys that allows the reader to learn the important aspects of William Thurston’s heritage. Thurston’s ideas have altered the course of twentieth century mathematics, and they continue to have a significant influence on succeeding generations of mathematicians. The topics covered in the present volume include com-plex hyperbolic Kleinian groups, Möbius structures, hyperbolic ends, cone 3-manifolds, Thurston’s norm, surgeries in representation varieties, triangulations, spaces of polygo-nal decompositions and of singular flat structures on surfaces, combination theorems in the theories of Kleinian groups, hyperbolic groups and holomorphic dynamics, the dynamics and iteration of rational maps, automatic groups, and the combinatorics of right-angled Artin groups.

Frontiers in Complex Dynamics

Download Frontiers in Complex Dynamics PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400851319
Total Pages : 824 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Frontiers in Complex Dynamics by : Araceli Bonifant

Download or read book Frontiers in Complex Dynamics written by Araceli Bonifant and published by Princeton University Press. This book was released on 2014-03-16 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: John Milnor, best known for his work in differential topology, K-theory, and dynamical systems, is one of only three mathematicians to have won the Fields medal, the Abel prize, and the Wolf prize, and is the only one to have received all three of the Leroy P. Steele prizes. In honor of his eightieth birthday, this book gathers together surveys and papers inspired by Milnor's work, from distinguished experts examining not only holomorphic dynamics in one and several variables, but also differential geometry, entropy theory, and combinatorial group theory. The book contains the last paper written by William Thurston, as well as a short paper by John Milnor himself. Introductory sections put the papers in mathematical and historical perspective, color figures are included, and an index facilitates browsing. This collection will be useful to students and researchers for decades to come. The contributors are Marco Abate, Marco Arizzi, Alexander Blokh, Thierry Bousch, Xavier Buff, Serge Cantat, Tao Chen, Robert Devaney, Alexandre Dezotti, Tien-Cuong Dinh, Romain Dujardin, Hugo García-Compeán, William Goldman, Rotislav Grigorchuk, John Hubbard, Yunping Jiang, Linda Keen, Jan Kiwi, Genadi Levin, Daniel Meyer, John Milnor, Carlos Moreira, Vincente Muñoz, Viet-Anh Nguyên, Lex Oversteegen, Ricardo Pérez-Marco, Ross Ptacek, Jasmin Raissy, Pascale Roesch, Roberto Santos-Silva, Dierk Schleicher, Nessim Sibony, Daniel Smania, Tan Lei, William Thurston, Vladlen Timorin, Sebastian van Strien, and Alberto Verjovsky.

Ergodic Theory

Download Ergodic Theory PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 1071623885
Total Pages : 707 pages
Book Rating : 4.0/5 (716 download)

DOWNLOAD NOW!


Book Synopsis Ergodic Theory by : Cesar E. Silva

Download or read book Ergodic Theory written by Cesar E. Silva and published by Springer Nature. This book was released on 2023-07-31 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, covers recent developments in classical areas of ergodic theory, including the asymptotic properties of measurable dynamical systems, spectral theory, entropy, ergodic theorems, joinings, isomorphism theory, recurrence, nonsingular systems. It enlightens connections of ergodic theory with symbolic dynamics, topological dynamics, smooth dynamics, combinatorics, number theory, pressure and equilibrium states, fractal geometry, chaos. In addition, the new edition includes dynamical systems of probabilistic origin, ergodic aspects of Sarnak's conjecture, translation flows on translation surfaces, complexity and classification of measurable systems, operator approach to asymptotic properties, interplay with operator algebras

Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot

Download Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821836378
Total Pages : 760 pages
Book Rating : 4.8/5 (363 download)

DOWNLOAD NOW!


Book Synopsis Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot by : Michel Laurent Lapidus

Download or read book Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot written by Michel Laurent Lapidus and published by American Mathematical Soc.. This book was released on 2004 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers an excellent selection of cutting-edge articles about fractal geometry, covering the great breadth of mathematics and related areas touched by this subject. Included are rich survey articles and fine expository papers. The high-quality contributions to the volume by well-known researchers--including two articles by Mandelbrot--provide a solid cross-section of recent research representing the richness and variety of contemporary advances in and around fractal geometry. In demonstrating the vitality and diversity of the field, this book will motivate further investigation into the many open problems and inspire future research directions. It is suitable for graduate students and researchers interested in fractal geometry and its applications. This is a two-part volume. Part 1 covers analysis, number theory, and dynamical systems; Part 2, multifractals, probability and statistical mechanics, and applications.

Geometric Set Theory

Download Geometric Set Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470454629
Total Pages : 345 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Geometric Set Theory by : Paul B. Larson

Download or read book Geometric Set Theory written by Paul B. Larson and published by American Mathematical Soc.. This book was released on 2020-07-16 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a new research direction in set theory: the study of models of set theory with respect to their extensional overlap or disagreement. In Part I, the method is applied to isolate new distinctions between Borel equivalence relations. Part II contains applications to independence results in Zermelo–Fraenkel set theory without Axiom of Choice. The method makes it possible to classify in great detail various paradoxical objects obtained using the Axiom of Choice; the classifying criterion is a ZF-provable implication between the existence of such objects. The book considers a broad spectrum of objects from analysis, algebra, and combinatorics: ultrafilters, Hamel bases, transcendence bases, colorings of Borel graphs, discontinuous homomorphisms between Polish groups, and many more. The topic is nearly inexhaustible in its variety, and many directions invite further investigation.

Linear and Quasilinear Parabolic Systems: Sobolev Space Theory

Download Linear and Quasilinear Parabolic Systems: Sobolev Space Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470461617
Total Pages : 226 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Linear and Quasilinear Parabolic Systems: Sobolev Space Theory by : David Hoff

Download or read book Linear and Quasilinear Parabolic Systems: Sobolev Space Theory written by David Hoff and published by American Mathematical Soc.. This book was released on 2020-11-18 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a systematic theory of weak solutions in Hilbert-Sobolev spaces of initial-boundary value problems for parabolic systems of partial differential equations with general essential and natural boundary conditions and minimal hypotheses on coefficients. Applications to quasilinear systems are given, including local existence for large data, global existence near an attractor, the Leray and Hopf theorems for the Navier-Stokes equations and results concerning invariant regions. Supplementary material is provided, including a self-contained treatment of the calculus of Sobolev functions on the boundaries of Lipschitz domains and a thorough discussion of measurability considerations for elements of Bochner-Sobolev spaces. This book will be particularly useful both for researchers requiring accessible and broadly applicable formulations of standard results as well as for students preparing for research in applied analysis. Readers should be familiar with the basic facts of measure theory and functional analysis, including weak derivatives and Sobolev spaces. Prior work in partial differential equations is helpful but not required.

Numerical Algorithms for Number Theory: Using Pari/GP

Download Numerical Algorithms for Number Theory: Using Pari/GP PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470463512
Total Pages : 429 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Numerical Algorithms for Number Theory: Using Pari/GP by : Karim Belabas

Download or read book Numerical Algorithms for Number Theory: Using Pari/GP written by Karim Belabas and published by American Mathematical Soc.. This book was released on 2021-06-23 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents multiprecision algorithms used in number theory and elsewhere, such as extrapolation, numerical integration, numerical summation (including multiple zeta values and the Riemann-Siegel formula), evaluation and speed of convergence of continued fractions, Euler products and Euler sums, inverse Mellin transforms, and complex L L-functions. For each task, many algorithms are presented, such as Gaussian and doubly-exponential integration, Euler-MacLaurin, Abel-Plana, Lagrange, and Monien summation. Each algorithm is given in detail, together with a complete implementation in the free Pari/GP system. These implementations serve both to make even more precise the inner workings of the algorithms, and to gently introduce advanced features of the Pari/GP language. This book will be appreciated by anyone interested in number theory, specifically in practical implementations, computer experiments and numerical algorithms that can be scaled to produce thousands of digits of accuracy.

Jordan Structures in Lie Algebras

Download Jordan Structures in Lie Algebras PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470450860
Total Pages : 314 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Jordan Structures in Lie Algebras by : Antonio Fernández López

Download or read book Jordan Structures in Lie Algebras written by Antonio Fernández López and published by American Mathematical Soc.. This book was released on 2019-08-19 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explores applications of Jordan theory to the theory of Lie algebras. After presenting the general theory of nonassociative algebras and of Lie algebras, the book then explains how properties of the Jordan algebra attached to a Jordan element of a Lie algebra can be used to reveal properties of the Lie algebra itself.

Algebraic Geometry Codes: Advanced Chapters

Download Algebraic Geometry Codes: Advanced Chapters PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470448653
Total Pages : 466 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Geometry Codes: Advanced Chapters by : Michael Tsfasman

Download or read book Algebraic Geometry Codes: Advanced Chapters written by Michael Tsfasman and published by American Mathematical Soc.. This book was released on 2019-07-02 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic Geometry Codes: Advanced Chapters is devoted to the theory of algebraic geometry codes, a subject related to local_libraryBook Catalogseveral domains of mathematics. On one hand, it involves such classical areas as algebraic geometry and number theory; on the other, it is connected to information transmission theory, combinatorics, finite geometries, dense packings, and so on. The book gives a unique perspective on the subject. Whereas most books on coding theory start with elementary concepts and then develop them in the framework of coding theory itself within, this book systematically presents meaningful and important connections of coding theory with algebraic geometry and number theory. Among many topics treated in the book, the following should be mentioned: curves with many points over finite fields, class field theory, asymptotic theory of global fields, decoding, sphere packing, codes from multi-dimensional varieties, and applications of algebraic geometry codes. The book is the natural continuation of Algebraic Geometric Codes: Basic Notions by the same authors. The concise exposition of the first volume is included as an appendix.

Dynamics, Geometry, Number Theory

Download Dynamics, Geometry, Number Theory PDF Online Free

Author :
Publisher : University of Chicago Press
ISBN 13 : 022680402X
Total Pages : 573 pages
Book Rating : 4.2/5 (268 download)

DOWNLOAD NOW!


Book Synopsis Dynamics, Geometry, Number Theory by : David Fisher

Download or read book Dynamics, Geometry, Number Theory written by David Fisher and published by University of Chicago Press. This book was released on 2022-02-07 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Mathematicians David Fisher, Dmitry Kleinbock, and Gregory Soifer highlight in this edited collection the foundations and evolution of research by mathematician Gregory Margulis. Margulis is unusual in the degree to which his solutions to particular problems have opened new vistas of mathematics. Margulis' ideas were central, for example, to developments that led to the recent Fields Medals of Elon Lindenstrauss and Maryam Mirzhakhani. The broad goal of this volume is to introduce these areas, their development, their use in current research, and the connections between them. The foremost experts on the topic have written each of the chapters in this volume with a view to making them accessible by graduate students and by experts in other parts of mathematics"--

The Dirichlet Space and Related Function Spaces

Download The Dirichlet Space and Related Function Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470450828
Total Pages : 559 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis The Dirichlet Space and Related Function Spaces by : Nicola Arcozzi

Download or read book The Dirichlet Space and Related Function Spaces written by Nicola Arcozzi and published by American Mathematical Soc.. This book was released on 2019-09-03 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of the classical Dirichlet space is one of the central topics on the intersection of the theory of holomorphic functions and functional analysis. It was introduced about100 years ago and continues to be an area of active current research. The theory is related to such important themes as multipliers, reproducing kernels, and Besov spaces, among others. The authors present the theory of the Dirichlet space and related spaces starting with classical results and including some quite recent achievements like Dirichlet-type spaces of functions in several complex variables and the corona problem. The first part of this book is an introduction to the function theory and operator theory of the classical Dirichlet space, a space of holomorphic functions on the unit disk defined by a smoothness criterion. The Dirichlet space is also a Hilbert space with a reproducing kernel, and is the model for the dyadic Dirichlet space, a sequence space defined on the dyadic tree. These various viewpoints are used to study a range of topics including the Pick property, multipliers, Carleson measures, boundary values, zero sets, interpolating sequences, the local Dirichlet integral, shift invariant subspaces, and Hankel forms. Recurring themes include analogies, sometimes weak and sometimes strong, with the classical Hardy space; and the analogy with the dyadic Dirichlet space. The final chapters of the book focus on Besov spaces of holomorphic functions on the complex unit ball, a class of Banach spaces generalizing the Dirichlet space. Additional techniques are developed to work with the nonisotropic complex geometry, including a useful invariant definition of local oscillation and a sophisticated variation on the dyadic Dirichlet space. Descriptions are obtained of multipliers, Carleson measures, interpolating sequences, and multiplier interpolating sequences; estimates are obtained to prove corona theorems.