Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Equidistribution Of Dynamical Systems
Download Equidistribution Of Dynamical Systems full books in PDF, epub, and Kindle. Read online Equidistribution Of Dynamical Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Equidistribution Of Dynamical Systems: Time-quantitative Second Law by : Jozsef Beck
Download or read book Equidistribution Of Dynamical Systems: Time-quantitative Second Law written by Jozsef Beck and published by World Scientific. This book was released on 2020-10-05 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: We know very little about the time-evolution of many-particle dynamical systems, the subject of our book. Even the 3-body problem has no explicit solution (we cannot solve the corresponding system of differential equations, and computer simulation indicates hopelessly chaotic behaviour). For example, what can we say about the typical time evolution of a large system starting from a stage far from equilibrium? What happens in a realistic time scale? The reader's first reaction is probably: What about the famous Second Law (of thermodynamics)?Unfortunately, there are plenty of notorious mathematical problems surrounding the Second Law. (1) How to rigorously define entropy? How to convert the well known intuitions (like 'disorder' and 'energy spreading') into precise mathematical definitions? (2) How to express the Second Law in forms of a rigorous mathematical theorem? (3) The Second Law is a 'soft' qualitative statement about entropy increase, but does not say anything about the necessary time to reach equilibrium.The object of this book is to answer questions (1)-(2)-(3). We rigorously prove a Time-Quantitative Second Law that works on a realistic time scale. As a by product, we clarify the Loschmidt-paradox and the related reversibility/irreversibility paradox.
Book Synopsis The Arithmetic of Dynamical Systems by : J.H. Silverman
Download or read book The Arithmetic of Dynamical Systems written by J.H. Silverman and published by Springer Science & Business Media. This book was released on 2010-05-05 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the relatively new discipline of arithmetic dynamics. Whereas classical discrete dynamics is the study of iteration of self-maps of the complex plane or real line, arithmetic dynamics is the study of the number-theoretic properties of rational and algebraic points under repeated application of a polynomial or rational function. A principal theme of arithmetic dynamics is that many of the fundamental problems in the theory of Diophantine equations have dynamical analogs.This graduate-level text provides an entry for students into an active field of research and serves as a standard reference for researchers.
Book Synopsis Equidistribution in Number Theory, An Introduction by : Andrew Granville
Download or read book Equidistribution in Number Theory, An Introduction written by Andrew Granville and published by Springer Science & Business Media. This book was released on 2007-04-08 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This set of lectures provides a structured introduction to the concept of equidistribution in number theory. This concept is of growing importance in many areas, including cryptography, zeros of L-functions, Heegner points, prime number theory, the theory of quadratic forms, and the arithmetic aspects of quantum chaos. The volume brings together leading researchers from a range of fields who reveal fascinating links between seemingly disparate areas.
Book Synopsis Introduction to the Modern Theory of Dynamical Systems by : Anatole Katok
Download or read book Introduction to the Modern Theory of Dynamical Systems written by Anatole Katok and published by Cambridge University Press. This book was released on 1995 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.
Book Synopsis Ergodic Theory by : Manfred Einsiedler
Download or read book Ergodic Theory written by Manfred Einsiedler and published by Springer Science & Business Media. This book was released on 2010-09-11 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.
Book Synopsis Recurrence in Ergodic Theory and Combinatorial Number Theory by : Harry Furstenberg
Download or read book Recurrence in Ergodic Theory and Combinatorial Number Theory written by Harry Furstenberg and published by Princeton University Press. This book was released on 2014-07-14 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological dynamics and ergodic theory usually have been treated independently. H. Furstenberg, instead, develops the common ground between them by applying the modern theory of dynamical systems to combinatories and number theory. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Book Synopsis Dynamics and Analytic Number Theory by : Dzmitry Badziahin
Download or read book Dynamics and Analytic Number Theory written by Dzmitry Badziahin and published by Cambridge University Press. This book was released on 2016-11-10 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents current research in various topics, including homogeneous dynamics, Diophantine approximation and combinatorics.
Book Synopsis A First Course in Dynamics by : Boris Hasselblatt
Download or read book A First Course in Dynamics written by Boris Hasselblatt and published by Cambridge University Press. This book was released on 2003-06-23 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of dynamical systems has given rise to the vast new area variously called applied dynamics, nonlinear science, or chaos theory. This introductory text covers the central topological and probabilistic notions in dynamics ranging from Newtonian mechanics to coding theory. The only prerequisite is a basic undergraduate analysis course. The authors use a progression of examples to present the concepts and tools for describing asymptotic behavior in dynamical systems, gradually increasing the level of complexity. Subjects include contractions, logistic maps, equidistribution, symbolic dynamics, mechanics, hyperbolic dynamics, strange attractors, twist maps, and KAM-theory.
Book Synopsis Ergodic Theory and Dynamical Systems in their Interactions with Arithmetics and Combinatorics by : Sébastien Ferenczi
Download or read book Ergodic Theory and Dynamical Systems in their Interactions with Arithmetics and Combinatorics written by Sébastien Ferenczi and published by Springer. This book was released on 2018-06-15 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book concentrates on the modern theory of dynamical systems and its interactions with number theory and combinatorics. The greater part begins with a course in analytic number theory and focuses on its links with ergodic theory, presenting an exhaustive account of recent research on Sarnak's conjecture on Möbius disjointness. Selected topics involving more traditional connections between number theory and dynamics are also presented, including equidistribution, homogenous dynamics, and Lagrange and Markov spectra. In addition, some dynamical and number theoretical aspects of aperiodic order, some algebraic systems, and a recent development concerning tame systems are described.
Book Synopsis Equidistribution of Dynamical Systems by : József Beck
Download or read book Equidistribution of Dynamical Systems written by József Beck and published by . This book was released on 2020 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: "We know very little about the time-evolution of many-particle dynamical systems, the subject of our book. Even the 3-body problem has no explicit solution (we cannot solve the corresponding system of differential equations, and computer simulation indicates hopelessly chaotic behaviour). For example, what can we say about the typical time evolution of a large system starting from a stage far from equilibrium? What happens in a realistic time scale? The reader's first reaction is probably: What about the famous Second Law (of thermodynamics)? Unfortunately, there are plenty of notorious mathematical problems surrounding the Second Law. (1) How to rigorously define entropy? How to convert the well known intuitions (like "disorder" and "energy spreading") into precise mathematical definitions? (2) How to express the Second Law in forms of a rigorous mathematical theorem? (3) The Second Law is a "soft" qualitative statement about entropy increase, but does not say anything about the necessary time to reach equilibrium. The object of this book is to answer questions (1)-(2)-(3). We rigorously prove a Time-Quantitative Second Law that works on a realistic time scale. As a by product, we clarify the Loschmidt-paradox and the related reversibility/irreversibility paradox"--
Book Synopsis Mathematics of Complexity and Dynamical Systems by : Robert A. Meyers
Download or read book Mathematics of Complexity and Dynamical Systems written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2011-10-05 with total page 1885 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Book Synopsis Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes) by : Boyan Sirakov
Download or read book Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes) written by Boyan Sirakov and published by World Scientific. This book was released on 2019-02-27 with total page 5393 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.
Book Synopsis Fifth International Congress of Chinese Mathematicians by : Lizhen Ji
Download or read book Fifth International Congress of Chinese Mathematicians written by Lizhen Ji and published by American Mathematical Soc.. This book was released on 2012 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-part volume represents the proceedings of the Fifth International Congress of Chinese Mathematicians, held at Tsinghua University, Beijing, in December 2010. The Congress brought together eminent Chinese and overseas mathematicians to discuss the latest developments in pure and applied mathematics. Included are 60 papers based on lectures given at the conference.
Book Synopsis Advanced Topics in the Arithmetic of Elliptic Curves by : Joseph H. Silverman
Download or read book Advanced Topics in the Arithmetic of Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.
Book Synopsis A Dynamical Approach to Random Matrix Theory by : László Erdős
Download or read book A Dynamical Approach to Random Matrix Theory written by László Erdős and published by American Mathematical Soc.. This book was released on 2017-08-30 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
Book Synopsis A First Course in Dynamics by : Boris Hasselblatt
Download or read book A First Course in Dynamics written by Boris Hasselblatt and published by Cambridge University Press. This book was released on 2003-06-23 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of dynamical systems is a major mathematical discipline closely intertwined with all main areas of mathematics. It has greatly stimulated research in many sciences and given rise to the vast new area variously called applied dynamics, nonlinear science, or chaos theory. This introduction for senior undergraduate and beginning graduate students of mathematics, physics, and engineering combines mathematical rigor with copious examples of important applications. It covers the central topological and probabilistic notions in dynamics ranging from Newtonian mechanics to coding theory. Readers need not be familiar with manifolds or measure theory; the only prerequisite is a basic undergraduate analysis course. The authors begin by describing the wide array of scientific and mathematical questions that dynamics can address. They then use a progression of examples to present the concepts and tools for describing asymptotic behavior in dynamical systems, gradually increasing the level of complexity. The final chapters introduce modern developments and applications of dynamics. Subjects include contractions, logistic maps, equidistribution, symbolic dynamics, mechanics, hyperbolic dynamics, strange attractors, twist maps, and KAM-theory.
Book Synopsis Elements of Dynamical Systems by : Anima Nagar
Download or read book Elements of Dynamical Systems written by Anima Nagar and published by Springer Nature. This book was released on 2022-11-11 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book stems from lectures that were delivered at the three-week Advanced Instructional School on Ergodic Theory and Dynamical Systems held at the Indian Institute of Technology Delhi, from 4–23 December 2017, with the support of the National Centre for Mathematics, National Board for Higher Mathematics, Department of Atomic Energy, Government of India. The book discusses various aspects of dynamical systems. Each chapter of this book specializes in one aspect of dynamical systems and thus begins at an elementary level and goes on to cover fairly advanced material. The book helps researchers be familiar with and navigate through different parts of ergodic theory and dynamical systems.