Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Elements Of Stochastic Modelling Third Edition
Download Elements Of Stochastic Modelling Third Edition full books in PDF, epub, and Kindle. Read online Elements Of Stochastic Modelling Third Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Elements Of Stochastic Modelling (Third Edition) by : Konstantin Borovkov
Download or read book Elements Of Stochastic Modelling (Third Edition) written by Konstantin Borovkov and published by World Scientific. This book was released on 2024-02-08 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a thoroughly revised and expanded third edition of a successful university textbook that provides a broad introduction to key areas of stochastic modelling. The previous edition was developed from lecture notes for two one-semester courses for third-year science and actuarial students at the University of Melbourne.This book reviews the basics of probability theory and presents topics on Markov chains, Markov decision processes, jump Markov processes, elements of queueing theory, basic renewal theory, elements of time series and simulation. It also features elements of stochastic calculus and introductory mathematical finance. This makes the book suitable for a larger variety of university courses presenting the fundamentals of modern stochastic modelling.To make the text covering a lot of material more appealing and accessible to the reader, instead of rigorous proofs we often give only sketches of the arguments, with indications as to why a particular result holds and also how it is related to other results, and illustrate them by examples. It is in this aspect that the present, third edition differs from the second one: the included background material and argument sketches have been extended, made more graphical and informative. The whole text was reviewed and streamlined wherever possible to make the book more attractive and useful for readers. Where appropriate, the book includes references to more specialised texts on respective topics that contain both complete proofs and more advanced material.
Book Synopsis An Introduction to Stochastic Modeling by : Howard M. Taylor
Download or read book An Introduction to Stochastic Modeling written by Howard M. Taylor and published by Academic Press. This book was released on 2014-05-10 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Book Synopsis Elements of Applied Stochastic Processes by : U. Narayan Bhat
Download or read book Elements of Applied Stochastic Processes written by U. Narayan Bhat and published by Wiley-Interscience. This book was released on 2002-09-06 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third edition of this volume improves on the last edition by condensing the material and organizing it into a more teachable format. It provides more in-depth coverage of Markov chains and simple Markov process and gives added emphasis to statistical inference in stochastic processes.
Book Synopsis Stochastic Modelling for Systems Biology, Third Edition by : Darren J. Wilkinson
Download or read book Stochastic Modelling for Systems Biology, Third Edition written by Darren J. Wilkinson and published by CRC Press. This book was released on 2018-12-07 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Having been thoroughly updated to reflect this, this third edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. New methods and applications are included in the book, and the use of R for practical illustration of the algorithms has been greatly extended. There is a brand new chapter on spatially extended systems, and the statistical inference chapter has also been extended with new methods, including approximate Bayesian computation (ABC). Stochastic Modelling for Systems Biology, Third Edition is now supplemented by an additional software library, written in Scala, described in a new appendix to the book. New in the Third Edition New chapter on spatially extended systems, covering the spatial Gillespie algorithm for reaction diffusion master equation models in 1- and 2-d, along with fast approximations based on the spatial chemical Langevin equation Significantly expanded chapter on inference for stochastic kinetic models from data, covering ABC, including ABC-SMC Updated R package, including code relating to all of the new material New R package for parsing SBML models into simulatable stochastic Petri net models New open-source software library, written in Scala, replicating most of the functionality of the R packages in a fast, compiled, strongly typed, functional language Keeping with the spirit of earlier editions, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.
Book Synopsis Elements of Stochastic Modelling by : K. A. Borovkov
Download or read book Elements of Stochastic Modelling written by K. A. Borovkov and published by World Scientific. This book was released on 2003 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook has been developed from the lecture notes for a one-semester course on stochastic modelling. It reviews the basics of probability theory and then covers the following topics: Markov chains, Markov decision processes, jump Markov processes, elements of queueing theory, basic renewal theory, elements of time series and simulation. Rigorous proofs are often replaced with sketches of arguments ? with indications as to why a particular result holds, and also how it is connected with other results ? and illustrated by examples. Wherever possible, the book includes references to more specialised texts containing both proofs and more advanced material related to the topics covered.
Book Synopsis Stochastic Modeling by : Nicolas Lanchier
Download or read book Stochastic Modeling written by Nicolas Lanchier and published by Springer. This book was released on 2017-01-27 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the gambler’s ruin chain, branching processes, symmetric random walks, and queueing systems. The third, more research-oriented part of the text, discusses special stochastic processes of interest in physics, biology, and sociology. Additional emphasis is placed on minimal models that have been used historically to develop new mathematical techniques in the field of stochastic processes: the logistic growth process, the Wright –Fisher model, Kingman’s coalescent, percolation models, the contact process, and the voter model. Further treatment of the material explains how these special processes are connected to each other from a modeling perspective as well as their simulation capabilities in C and MatlabTM.
Book Synopsis Essentials of Stochastic Processes by : Richard Durrett
Download or read book Essentials of Stochastic Processes written by Richard Durrett and published by Springer. This book was released on 2016-11-07 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Book Synopsis Stochastic Processes by : Peter Watts Jones
Download or read book Stochastic Processes written by Peter Watts Jones and published by CRC Press. This book was released on 2017-10-30 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a well-established and popular course taught by the authors over many years, Stochastic Processes: An Introduction, Third Edition, discusses the modelling and analysis of random experiments, where processes evolve over time. The text begins with a review of relevant fundamental probability. It then covers gambling problems, random walks, and Markov chains. The authors go on to discuss random processes continuous in time, including Poisson, birth and death processes, and general population models, and present an extended discussion on the analysis of associated stationary processes in queues. The book also explores reliability and other random processes, such as branching, martingales, and simple epidemics. A new chapter describing Brownian motion, where the outcomes are continuously observed over continuous time, is included. Further applications, worked examples and problems, and biographical details have been added to this edition. Much of the text has been reworked. The appendix contains key results in probability for reference. This concise, updated book makes the material accessible, highlighting simple applications and examples. A solutions manual with fully worked answers of all end-of-chapter problems, and Mathematica® and R programs illustrating many processes discussed in the book, can be downloaded from crcpress.com.
Book Synopsis Lectures on Stochastic Programming by : Alexander Shapiro
Download or read book Lectures on Stochastic Programming written by Alexander Shapiro and published by SIAM. This book was released on 2009-01-01 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.
Book Synopsis Introduction to Modeling and Analysis of Stochastic Systems by : V. G. Kulkarni
Download or read book Introduction to Modeling and Analysis of Stochastic Systems written by V. G. Kulkarni and published by Springer. This book was released on 2012-12-27 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.
Book Synopsis The Elements of Stochastic Processes with Applications to the Natural Sciences by : Norman T. J. Bailey
Download or read book The Elements of Stochastic Processes with Applications to the Natural Sciences written by Norman T. J. Bailey and published by John Wiley & Sons. This book was released on 1991-01-16 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develops an introductory and relatively simple account of the theory and application of the evolutionary type of stochastic process. Professor Bailey adopts the heuristic approach of applied mathematics and develops both theoretical principles and applied techniques simultaneously.
Book Synopsis Markov Processes for Stochastic Modeling by : Oliver Ibe
Download or read book Markov Processes for Stochastic Modeling written by Oliver Ibe and published by Newnes. This book was released on 2013-05-22 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.
Book Synopsis Stochastic Modeling in Economics and Finance by : Jitka Dupacova
Download or read book Stochastic Modeling in Economics and Finance written by Jitka Dupacova and published by Springer Science & Business Media. This book was released on 2005-12-30 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Part I, the fundamentals of financial thinking and elementary mathematical methods of finance are presented. The method of presentation is simple enough to bridge the elements of financial arithmetic and complex models of financial math developed in the later parts. It covers characteristics of cash flows, yield curves, and valuation of securities. Part II is devoted to the allocation of funds and risk management: classics (Markowitz theory of portfolio), capital asset pricing model, arbitrage pricing theory, asset & liability management, value at risk. The method explanation takes into account the computational aspects. Part III explains modeling aspects of multistage stochastic programming on a relatively accessible level. It includes a survey of existing software, links to parametric, multiobjective and dynamic programming, and to probability and statistics. It focuses on scenario-based problems with the problems of scenario generation and output analysis discussed in detail and illustrated within a case study.
Author :Gregory S. Chirikjian Publisher :Springer Science & Business Media ISBN 13 :0817648038 Total Pages :397 pages Book Rating :4.8/5 (176 download)
Book Synopsis Stochastic Models, Information Theory, and Lie Groups, Volume 1 by : Gregory S. Chirikjian
Download or read book Stochastic Models, Information Theory, and Lie Groups, Volume 1 written by Gregory S. Chirikjian and published by Springer Science & Business Media. This book was released on 2009-09-02 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.
Book Synopsis Stochastic Modelling of Social Processes by : Andreas Diekmann
Download or read book Stochastic Modelling of Social Processes written by Andreas Diekmann and published by Academic Press. This book was released on 2014-05-10 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Modelling of Social Processes provides information pertinent to the development in the field of stochastic modeling and its applications in the social sciences. This book demonstrates that stochastic models can fulfill the goals of explanation and prediction. Organized into nine chapters, this book begins with an overview of stochastic models that fulfill normative, predictive, and structural–analytic roles with the aid of the theory of probability. This text then examines the study of labor market structures using analysis of job and career mobility, which is one of the approaches taken by sociologists in research on the labor market. Other chapters consider the characteristic trends and patterns from data on divorces. This book discusses as well the two approaches of stochastic modeling of social processes, namely competing risk models and semi-Markov processes. The final chapter deals with the practical application of regression models of survival data. This book is a valuable resource for social scientists and statisticians.
Book Synopsis Concepts in Probability and Stochastic Modeling by : James J. Higgins
Download or read book Concepts in Probability and Stochastic Modeling written by James J. Higgins and published by Duxbury Resource Center. This book was released on 1995 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text stresses modern ideas, including simulation and interpretation of results. It focuses on the aspects of probability most relevant to applications, such as stochastic modeling, Markov chains, reliability, and queuing.
Author :Konstantin Borovkov Publisher :World Scientific Publishing Company ISBN 13 :9814571180 Total Pages :499 pages Book Rating :4.8/5 (145 download)
Book Synopsis Elements Of Stochastic Modelling (2nd Edition) by : Konstantin Borovkov
Download or read book Elements Of Stochastic Modelling (2nd Edition) written by Konstantin Borovkov and published by World Scientific Publishing Company. This book was released on 2014-06-30 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the expanded second edition of a successful textbook that provides a broad introduction to important areas of stochastic modelling. The original text was developed from lecture notes for a one-semester course for third-year science and actuarial students at the University of Melbourne. It reviewed the basics of probability theory and then covered the following topics: Markov chains, Markov decision processes, jump Markov processes, elements of queueing theory, basic renewal theory, elements of time series and simulation.The present edition adds new chapters on elements of stochastic calculus and introductory mathematical finance that logically complement the topics chosen for the first edition. This makes the book suitable for a larger variety of university courses presenting the fundamentals of modern stochastic modelling. Instead of rigorous proofs we often give only sketches of the arguments, with indications as to why a particular result holds and also how it is related to other results, and illustrate them by examples. Wherever possible, the book includes references to more specialised texts on respective topics that contain both proofs and more advanced material.