A Vector Space Approach to Geometry

Download A Vector Space Approach to Geometry PDF Online Free

Author :
Publisher : Courier Dover Publications
ISBN 13 : 0486835391
Total Pages : 417 pages
Book Rating : 4.4/5 (868 download)

DOWNLOAD NOW!


Book Synopsis A Vector Space Approach to Geometry by : Melvin Hausner

Download or read book A Vector Space Approach to Geometry written by Melvin Hausner and published by Courier Dover Publications. This book was released on 2018-10-17 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.

Euclid's Elements of Geometry

Download Euclid's Elements of Geometry PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 546 pages
Book Rating : 4.5/5 (895 download)

DOWNLOAD NOW!


Book Synopsis Euclid's Elements of Geometry by : Euclid

Download or read book Euclid's Elements of Geometry written by Euclid and published by . This book was released on 2008 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: EUCLID'S ELEMENTS OF GEOMETRY, in Greek and English. The Greek text of J.L. Heiberg (1883-1885), edited, and provided with a modern English translation, by Richard Fitzpatrick.[Description from Wikipedia: ] The Elements (Ancient Greek: Στοιχεῖον Stoikheîon) is a mathematical treatise consisting of 13 books (all included in this volume) attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. Elements is the oldest extant large-scale deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science, and its logical rigor was not surpassed until the 19th century.

Euclid

Download Euclid PDF Online Free

Author :
Publisher :
ISBN 13 : 9781908944368
Total Pages : 54 pages
Book Rating : 4.9/5 (443 download)

DOWNLOAD NOW!


Book Synopsis Euclid by : Shoo Rayner

Download or read book Euclid written by Shoo Rayner and published by . This book was released on 2017-11-02 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry is brought to life as Euclid explains principles of Geometry to his friends. With jokes and lots of illustrations, discover the beauty of geometry and, before you know it, you too will soon be a friend of Euclid! Shoo Rayner adds humour and simplicity to a tricky subject. A perfect introduction.

Geometry of Sets and Measures in Euclidean Spaces

Download Geometry of Sets and Measures in Euclidean Spaces PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521655958
Total Pages : 360 pages
Book Rating : 4.6/5 (559 download)

DOWNLOAD NOW!


Book Synopsis Geometry of Sets and Measures in Euclidean Spaces by : Pertti Mattila

Download or read book Geometry of Sets and Measures in Euclidean Spaces written by Pertti Mattila and published by Cambridge University Press. This book was released on 1999-02-25 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the geometric properties of general sets and measures in euclidean space.

Euclid's Elements

Download Euclid's Elements PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 544 pages
Book Rating : 4.E/5 ( download)

DOWNLOAD NOW!


Book Synopsis Euclid's Elements by : Euclid

Download or read book Euclid's Elements written by Euclid and published by . This book was released on 2002 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.

Conceptual Spaces

Download Conceptual Spaces PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262572194
Total Pages : 324 pages
Book Rating : 4.5/5 (721 download)

DOWNLOAD NOW!


Book Synopsis Conceptual Spaces by : Peter Gardenfors

Download or read book Conceptual Spaces written by Peter Gardenfors and published by MIT Press. This book was released on 2004-01-30 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Within cognitive science, two approaches currently dominate the problem of modeling representations. The symbolic approach views cognition as computation involving symbolic manipulation. Connectionism, a special case of associationism, models associations using artificial neuron networks. Peter Gärdenfors offers his theory of conceptual representations as a bridge between the symbolic and connectionist approaches. Symbolic representation is particularly weak at modeling concept learning, which is paramount for understanding many cognitive phenomena. Concept learning is closely tied to the notion of similarity, which is also poorly served by the symbolic approach. Gärdenfors's theory of conceptual spaces presents a framework for representing information on the conceptual level. A conceptual space is built up from geometrical structures based on a number of quality dimensions. The main applications of the theory are on the constructive side of cognitive science: as a constructive model the theory can be applied to the development of artificial systems capable of solving cognitive tasks. Gärdenfors also shows how conceptual spaces can serve as an explanatory framework for a number of empirical theories, in particular those concerning concept formation, induction, and semantics. His aim is to present a coherent research program that can be used as a basis for more detailed investigations.

Designing Learning Environments for Developing Understanding of Geometry and Space

Download Designing Learning Environments for Developing Understanding of Geometry and Space PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 0805819487
Total Pages : 520 pages
Book Rating : 4.8/5 (58 download)

DOWNLOAD NOW!


Book Synopsis Designing Learning Environments for Developing Understanding of Geometry and Space by : Richard Lehrer

Download or read book Designing Learning Environments for Developing Understanding of Geometry and Space written by Richard Lehrer and published by Routledge. This book was released on 1998 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reflects an appreciation of the interactive roles of subject matter, teacher, student, and technologies in designing classrooms that promote understanding of geometry and space. Although these elements of geometry education are mutually constituted, the book is organized to highlight, first, the editors' vision of a general geometry education; second, the development of student thinking in everyday and classroom contexts; and third, the role of technologies. Rather than looking to high school geometry as the locus--and all too often, the apex--of geometric reasoning, the contributors to this volume suggest that reasoning about space can and should be successfully integrated with other forms of mathematics, starting at the elementary level and continuing through high school. Reintegrating spatial reasoning into the mathematical mainstream--indeed, placing it at the core of K-12 mathematics environments that promote learning with understanding--will mean increased attention to problems in modeling, structure, and design and reinvigoration of traditional topics such as measure, dimension, and form. Further, the editors' position is that the teaching of geometry and spatial visualization in school should not be compressed into a characterization of Greek geometry, but should include attention to contributions to the mathematics of space that developed subsequent to those of the Greeks. This volume is essential reading for those involved in mathematics education at all levels, including university faculty, researchers, and graduate students.

The Foundations of Geometry

Download The Foundations of Geometry PDF Online Free

Author :
Publisher : Read Books Ltd
ISBN 13 : 1473395941
Total Pages : 139 pages
Book Rating : 4.4/5 (733 download)

DOWNLOAD NOW!


Book Synopsis The Foundations of Geometry by : David Hilbert

Download or read book The Foundations of Geometry written by David Hilbert and published by Read Books Ltd. This book was released on 2015-05-06 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.

The Elements of Non-Euclidean Geometry

Download The Elements of Non-Euclidean Geometry PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 588 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis The Elements of Non-Euclidean Geometry by : Duncan M'Laren Young Sommerville

Download or read book The Elements of Non-Euclidean Geometry written by Duncan M'Laren Young Sommerville and published by . This book was released on 1914 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geometry II

Download Geometry II PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662029014
Total Pages : 263 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Geometry II by : E.B. Vinberg

Download or read book Geometry II written by E.B. Vinberg and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: A very clear account of the subject from the viewpoints of elementary geometry, Riemannian geometry and group theory – a book with no rival in the literature. Mostly accessible to first-year students in mathematics, the book also includes very recent results which will be of interest to researchers in this field.

Space, Geometry, and Kant's Transcendental Deduction of the Categories

Download Space, Geometry, and Kant's Transcendental Deduction of the Categories PDF Online Free

Author :
Publisher :
ISBN 13 : 019938116X
Total Pages : 265 pages
Book Rating : 4.1/5 (993 download)

DOWNLOAD NOW!


Book Synopsis Space, Geometry, and Kant's Transcendental Deduction of the Categories by : Thomas C. Vinci

Download or read book Space, Geometry, and Kant's Transcendental Deduction of the Categories written by Thomas C. Vinci and published by . This book was released on 2015 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thomas C. Vinci aims to reveal and assess the structure of Kant's argument in the Critique of Pure Reason called the "Transcendental Deduction of the Categories." At the end of the first part of the Deduction in the B-edition Kant states that his purpose is achieved: to show that all intuitions in general are subject to the categories. On the standard reading, this means that all of our mental representations, including those originating in sense-experience, are structured by conceptualization. But this reading encounters an exegetical problem: Kant states in the second part of the Deduction that a major part of what remains to be shown is that empirical intuitions are subject to the categories. How can this be if it has already been shown that intuitions in general are subject to the categories? Vinci calls this the Triviality Problem, and he argues that solving it requires denying the standard reading. In its place he proposes that intuitions in general and empirical intuitions constitute disjoint classes and that, while all intuitions for Kant are unified, there are two kinds of unification: logical unification vs. aesthetic unification. Only the former is due to the categories. A second major theme of the book is that Kant's Idealism comes in two versions-for laws of nature and for objects of empirical intuition-and that demonstrating these versions is the ultimate goal of the Deduction of the Categories and the similarly structured Deduction of the Concepts of Space, respectively. Vinci shows that the Deductions have the argument structure of an inference to the best explanation for correlated domains of explananda, each arrived at by independent applications of Kantian epistemic and geometrical methods.

Geometry and Meaning

Download Geometry and Meaning PDF Online Free

Author :
Publisher : Stanford Univ Center for the Study
ISBN 13 : 9781575864471
Total Pages : 319 pages
Book Rating : 4.8/5 (644 download)

DOWNLOAD NOW!


Book Synopsis Geometry and Meaning by : Dominic Widdows

Download or read book Geometry and Meaning written by Dominic Widdows and published by Stanford Univ Center for the Study. This book was released on 2004 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric models similar to those of Pythagoras and Einstein are now being applied to the conceptual space of information and meaning, for example in the arrangement of Internet documents. This text explores the computational techniques necessary to represent meaning and their basis in conceptual space.

Encounters with Euclid

Download Encounters with Euclid PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691235767
Total Pages : 416 pages
Book Rating : 4.6/5 (912 download)

DOWNLOAD NOW!


Book Synopsis Encounters with Euclid by : Benjamin Wardhaugh

Download or read book Encounters with Euclid written by Benjamin Wardhaugh and published by Princeton University Press. This book was released on 2023-11-14 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: A sweeping cultural history of one of the most influential mathematical books ever written Euclid's Elements of Geometry is one of the fountainheads of mathematics—and of culture. Written around 300 BCE, it has traveled widely across the centuries, generating countless new ideas and inspiring such figures as Isaac Newton, Bertrand Russell, Abraham Lincoln, and Albert Einstein. Encounters with Euclid tells the story of this incomparable mathematical masterpiece, taking readers from its origins in the ancient world to its continuing influence today. In this lively and informative book, Benjamin Wardhaugh explains how Euclid’s text journeyed from antiquity to the Renaissance, introducing some of the many readers, copyists, and editors who left their mark on the Elements before handing it on. He shows how some read the book as a work of philosophy, while others viewed it as a practical guide to life. He examines the many different contexts in which Euclid's book and his geometry were put to use, from the Neoplatonic school at Athens and the artisans' studios of medieval Baghdad to the Jesuit mission in China and the workshops of Restoration London. Wardhaugh shows how the Elements inspired ideas in theology, art, and music, and how the book has acquired new relevance to the strange geometries of dark matter and curved space. Encounters with Euclid traces the life and afterlives of one of the most remarkable works of mathematics ever written, revealing its lasting role in the timeless search for order and reason in an unruly world.

Space and Geometry in the Light of Physiological, Psychological and Physical Inquiry

Download Space and Geometry in the Light of Physiological, Psychological and Physical Inquiry PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 164 pages
Book Rating : 4.:/5 (318 download)

DOWNLOAD NOW!


Book Synopsis Space and Geometry in the Light of Physiological, Psychological and Physical Inquiry by : Ernst Mach

Download or read book Space and Geometry in the Light of Physiological, Psychological and Physical Inquiry written by Ernst Mach and published by . This book was released on 1906 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Elements of Asymptotic Geometry

Download Elements of Asymptotic Geometry PDF Online Free

Author :
Publisher : European Mathematical Society
ISBN 13 : 9783037190364
Total Pages : 220 pages
Book Rating : 4.1/5 (93 download)

DOWNLOAD NOW!


Book Synopsis Elements of Asymptotic Geometry by : Sergei Buyalo

Download or read book Elements of Asymptotic Geometry written by Sergei Buyalo and published by European Mathematical Society. This book was released on 2007 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Asymptotic geometry is the study of metric spaces from a large scale point of view, where the local geometry does not come into play. An important class of model spaces are the hyperbolic spaces (in the sense of Gromov), for which the asymptotic geometry is nicely encoded in the boundary at infinity. In the first part of this book, in analogy with the concepts of classical hyperbolic geometry, the authors provide a systematic account of the basic theory of Gromov hyperbolic spaces. These spaces have been studied extensively in the last twenty years and have found applications in group theory, geometric topology, Kleinian groups, as well as dynamics and rigidity theory. In the second part of the book, various aspects of the asymptotic geometry of arbitrary metric spaces are considered. It turns out that the boundary at infinity approach is not appropriate in the general case, but dimension theory proves useful for finding interesting results and applications. The text leads concisely to some central aspects of the theory. Each chapter concludes with a separate section containing supplementary results and bibliographical notes. Here the theory is also illustrated with numerous examples as well as relations to the neighboring fields of comparison geometry and geometric group theory. The book is based on lectures the authors presented at the Steklov Institute in St. Petersburg and the University of Zurich.

Geometry with an Introduction to Cosmic Topology

Download Geometry with an Introduction to Cosmic Topology PDF Online Free

Author :
Publisher : Jones & Bartlett Learning
ISBN 13 : 0763754579
Total Pages : 255 pages
Book Rating : 4.7/5 (637 download)

DOWNLOAD NOW!


Book Synopsis Geometry with an Introduction to Cosmic Topology by : Michael P. Hitchman

Download or read book Geometry with an Introduction to Cosmic Topology written by Michael P. Hitchman and published by Jones & Bartlett Learning. This book was released on 2009 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: The content of Geometry with an Introduction to Cosmic Topology is motivated by questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have and edge? Is it infinitely big? Dr. Hitchman aims to clarify this fascinating area of mathematics. This non-Euclidean geometry text is organized intothree natural parts. Chapter 1 provides an overview including a brief history of Geometry, Surfaces, and reasons to study Non-Euclidean Geometry. Chapters 2-7 contain the core mathematical content of the text, following the ErlangenProgram, which develops geometry in terms of a space and a group of transformations on that space. Finally chapters 1 and 8 introduce (chapter 1) and explore (chapter 8) the topic of cosmic topology through the geometry learned in the preceding chapters.

Elements of Hilbert Spaces and Operator Theory

Download Elements of Hilbert Spaces and Operator Theory PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811030200
Total Pages : 528 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Elements of Hilbert Spaces and Operator Theory by : Harkrishan Lal Vasudeva

Download or read book Elements of Hilbert Spaces and Operator Theory written by Harkrishan Lal Vasudeva and published by Springer. This book was released on 2017-03-27 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.