Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Electronic Implementation Of Neural Networks
Download Electronic Implementation Of Neural Networks full books in PDF, epub, and Kindle. Read online Electronic Implementation Of Neural Networks ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Digital Neural Networks by : Sun Yuan Kung
Download or read book Digital Neural Networks written by Sun Yuan Kung and published by Prentice Hall. This book was released on 1993 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for engineers and researchers interested in the applications of neural networks to signal and image processing, this book is theoretically based with emphasis on application and implementation. Coverage includes neural networks for representation, unsupervised networks for association/classification, neural networks for generalization/restoration, neural net and conventional optimization techniques, and special purpose supercomputers for neural nets.
Download or read book Modern Fortran written by Milan Curcic and published by Simon and Schuster. This book was released on 2020-10-07 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Fortran teaches you to develop fast, efficient parallel applications using twenty-first-century Fortran. In this guide, you’ll dive into Fortran by creating fun apps, including a tsunami simulator and a stock price analyzer. Filled with real-world use cases, insightful illustrations, and hands-on exercises, Modern Fortran helps you see this classic language in a whole new light. Summary Using Fortran, early and accurate forecasts for hurricanes and other major storms have saved thousands of lives. Better designs for ships, planes, and automobiles have made travel safer, more efficient, and less expensive than ever before. Using Fortran, low-level machine learning and deep learning libraries provide incredibly easy, fast, and insightful analysis of massive data. Fortran is an amazingly powerful and flexible programming language that forms the foundation of high performance computing for research, science, and industry. And it's come a long, long way since starting life on IBM mainframes in 1956. Modern Fortran is natively parallel, so it's uniquely suited for efficiently handling problems like complex simulations, long-range predictions, and ultra-precise designs. If you're working on tasks where speed, accuracy, and efficiency matter, it's time to discover—or re-discover—Fortran.. About the technology For over 60 years Fortran has been powering mission-critical scientific applications, and it isn't slowing down yet! Rock-solid reliability and new support for parallel programming make Fortran an essential language for next-generation high-performance computing. Simply put, the future is in parallel, and Fortran is already there. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the book Modern Fortran teaches you to develop fast, efficient parallel applications using twenty-first-century Fortran. In this guide, you'll dive into Fortran by creating fun apps, including a tsunami simulator and a stock price analyzer. Filled with real-world use cases, insightful illustrations, and hands-on exercises, Modern Fortran helps you see this classic language in a whole new light. What's inside Fortran's place in the modern world Working with variables, arrays, and functions Module development Parallelism with coarrays, teams, and events Interoperating Fortran with C About the reader For developers and computational scientists. No experience with Fortran required. About the author Milan Curcic is a meteorologist, oceanographer, and author of several general-purpose Fortran libraries and applications. Table of Contents PART 1 - GETTING STARTED WITH MODERN FORTRAN 1 Introducing Fortran 2 Getting started: Minimal working app PART 2 - CORE ELEMENTS OF FORTRAN 3 Writing reusable code with functions and subroutines 4 Organizing your Fortran code using modules 5 Analyzing time series data with arrays 6 Reading, writing, and formatting your data PART 3 - ADVANCED FORTRAN USE 7 Going parallel with Fortan coarrays 8 Working with abstract data using derived types 9 Generic procedures and operators for any data type 10 User-defined operators for derived types PART 4 - THE FINAL STRETCH 11 Interoperability with C: Exposing your app to the web 12 Advanced parallelism with teams, events, and collectives
Book Synopsis FPGA Implementations of Neural Networks by : Amos R. Omondi
Download or read book FPGA Implementations of Neural Networks written by Amos R. Omondi and published by Springer Science & Business Media. This book was released on 2006-10-04 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the 1980s and early 1990s there was signi?cant work in the design and implementation of hardware neurocomputers. Nevertheless, most of these efforts may be judged to have been unsuccessful: at no time have have ha- ware neurocomputers been in wide use. This lack of success may be largely attributed to the fact that earlier work was almost entirely aimed at developing custom neurocomputers, based on ASIC technology, but for such niche - eas this technology was never suf?ciently developed or competitive enough to justify large-scale adoption. On the other hand, gate-arrays of the period m- tioned were never large enough nor fast enough for serious arti?cial-neur- network (ANN) applications. But technology has now improved: the capacity and performance of current FPGAs are such that they present a much more realistic alternative. Consequently neurocomputers based on FPGAs are now a much more practical proposition than they have been in the past. This book summarizes some work towards this goal and consists of 12 papers that were selected, after review, from a number of submissions. The book is nominally divided into three parts: Chapters 1 through 4 deal with foundational issues; Chapters 5 through 11 deal with a variety of implementations; and Chapter 12 looks at the lessons learned from a large-scale project and also reconsiders design issues in light of current and future technology.
Book Synopsis Introduction to Neural Networks with Java by : Jeff Heaton
Download or read book Introduction to Neural Networks with Java written by Jeff Heaton and published by Heaton Research Incorporated. This book was released on 2005 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: In addition to showing the programmer how to construct Neural Networks, the book discusses the Java Object Oriented Neural Engine (JOONE), a free open source Java neural engine. (Computers)
Book Synopsis Neural Network Applications in Control by : George William Irwin
Download or read book Neural Network Applications in Control written by George William Irwin and published by IET. This book was released on 1995 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim is to present an introduction to, and an overview of, the present state of neural network research and development, with an emphasis on control systems application studies. The book is useful to a range of levels of reader. The earlier chapters introduce the more popular networks and the fundamental control principles, these are followed by a series of application studies, most of which are industrially based, and the book concludes with a consideration of some recent research.
Book Synopsis The Nature of Code by : Daniel Shiffman
Download or read book The Nature of Code written by Daniel Shiffman and published by No Starch Press. This book was released on 2024-09-03 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScript-based edition of Shiffman’s groundbreaking work gently unfolds the mysteries of the natural world, turning complex topics like genetic algorithms, physics-based simulations, and neural networks into accessible and visually stunning creations. Embark on this extraordinary adventure with projects involving: A physics engine: Simulate the push and pull of gravitational attraction. Flocking birds: Choreograph the mesmerizing dance of a flock. Branching trees: Grow lifelike and organic tree structures. Neural networks: Craft intelligent systems that learn and adapt. Cellular automata: Uncover the magic of self-organizing patterns. Evolutionary algorithms: Play witness to natural selection in your code. Shiffman’s work has transformed thousands of curious minds into creators, breaking down barriers between science, art, and technology, and inviting readers to see code not just as a tool for tasks but as a canvas for boundless creativity. Whether you’re deciphering the elegant patterns of natural phenomena or crafting your own digital ecosystems, Shiffman’s guidance is sure to inform and inspire. The Nature of Code is not just about coding; it’s about looking at the natural world in a new way and letting its wonders inspire your next creation. Dive in and discover the joy of turning code into art—all while mastering coding fundamentals along the way. NOTE: All examples are written with p5.js, a JavaScript library for creative coding, and are available on the book's website.
Book Synopsis Neural Network Design by : Martin T. Hagan
Download or read book Neural Network Design written by Martin T. Hagan and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Multivariate Statistical Machine Learning Methods for Genomic Prediction by : Osval Antonio Montesinos López
Download or read book Multivariate Statistical Machine Learning Methods for Genomic Prediction written by Osval Antonio Montesinos López and published by Springer Nature. This book was released on 2022-02-14 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
Book Synopsis Efficient Processing of Deep Neural Networks by : Vivienne Sze
Download or read book Efficient Processing of Deep Neural Networks written by Vivienne Sze and published by Springer Nature. This book was released on 2022-05-31 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Book Synopsis Applications of Neural Networks by : Alan Murray
Download or read book Applications of Neural Networks written by Alan Murray and published by Springer Science & Business Media. This book was released on 1994-12-31 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Neural Networks gives a detailed description of 13 practical applications of neural networks, selected because the tasks performed by the neural networks are real and significant. The contributions are from leading researchers in neural networks and, as a whole, provide a balanced coverage across a range of application areas and algorithms. The book is divided into three sections. Section A is an introduction to neural networks for nonspecialists. Section B looks at examples of applications using `Supervised Training'. Section C presents a number of examples of `Unsupervised Training'. For neural network enthusiasts and interested, open-minded sceptics. The book leads the latter through the fundamentals into a convincing and varied series of neural success stories -- described carefully and honestly without over-claiming. Applications of Neural Networks is essential reading for all researchers and designers who are tasked with using neural networks in real life applications.
Download or read book Neural Networks written by Berndt Müller and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks presents concepts of neural-network models and techniques of parallel distributed processing in a three-step approach: - A brief overview of the neural structure of the brain and the history of neural-network modeling introduces to associative memory, preceptrons, feature-sensitive networks, learning strategies, and practical applications. - The second part covers subjects like statistical physics of spin glasses, the mean-field theory of the Hopfield model, and the "space of interactions" approach to the storage capacity of neural networks. - The final part discusses nine programs with practical demonstrations of neural-network models. The software and source code in C are on a 3 1/2" MS-DOS diskette can be run with Microsoft, Borland, Turbo-C, or compatible compilers.
Book Synopsis Application Of Neural Networks And Other Learning Technologies In Process Engineering by : M A Hussain
Download or read book Application Of Neural Networks And Other Learning Technologies In Process Engineering written by M A Hussain and published by World Scientific. This book was released on 2001-04-02 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a follow-up to the IChemE symposium on “Neural Networks and Other Learning Technologies”, held at Imperial College, UK, in May 1999. The interest shown by the participants, especially those from the industry, has been instrumental in producing the book. The papers have been written by contributors of the symposium and experts in this field from around the world. They present all the important aspects of neural network utilisation as well as show the versatility of neural networks in various aspects of process engineering problems — modelling, estimation, control, optimisation and industrial applications.
Book Synopsis State of the Art in Neural Networks and Their Applications by : Ayman S. El-Baz
Download or read book State of the Art in Neural Networks and Their Applications written by Ayman S. El-Baz and published by Academic Press. This book was released on 2021-07-21 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: State of the Art in Neural Networks and Their Applications presents the latest advances in artificial neural networks and their applications across a wide range of clinical diagnoses. Advances in the role of machine learning, artificial intelligence, deep learning, cognitive image processing and suitable data analytics useful for clinical diagnosis and research applications are covered, including relevant case studies. The application of Neural Network, Artificial Intelligence, and Machine Learning methods in biomedical image analysis have resulted in the development of computer-aided diagnostic (CAD) systems that aim towards the automatic early detection of several severe diseases. State of the Art in Neural Networks and Their Applications is presented in two volumes. Volume 1 covers the state-of-the-art deep learning approaches for the detection of renal, retinal, breast, skin, and dental abnormalities and more. - Includes applications of neural networks, AI, machine learning, and deep learning techniques to a variety of imaging technologies - Provides in-depth technical coverage of computer-aided diagnosis (CAD), with coverage of computer-aided classification, Unified Deep Learning Frameworks, mammography, fundus imaging, optical coherence tomography, cryo-electron tomography, 3D MRI, CT, and more - Covers deep learning for several medical conditions including renal, retinal, breast, skin, and dental abnormalities, Medical Image Analysis, as well as detection, segmentation, and classification via AI
Author :Management Association, Information Resources Publisher :IGI Global ISBN 13 :1668424096 Total Pages :1575 pages Book Rating :4.6/5 (684 download)
Book Synopsis Research Anthology on Artificial Neural Network Applications by : Management Association, Information Resources
Download or read book Research Anthology on Artificial Neural Network Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2021-07-16 with total page 1575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.
Book Synopsis Artificial Neural Network Training and Software Implementation Techniques by : Ali Kattan
Download or read book Artificial Neural Network Training and Software Implementation Techniques written by Ali Kattan and published by Nova Novinka. This book was released on 2011 with total page 58 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks (ANN) are widely used in diverse fields of science and industry. Though there have been numerous techniques used for their implementations, the choice of a specific implementation is subjected to different factors including cost, accuracy, processing speed and overall performance. Featured with synaptic plasticity, the process of training is concerned with adjusting the individual weights between each of the individual ANN neurons until we can achieve close to the desired output. This book introduces the common trajectory-driven and evolutionary-based ANN training algorithms.
Book Synopsis Learning and Categorization in Modular Neural Networks by : Jacob M.J. Murre
Download or read book Learning and Categorization in Modular Neural Networks written by Jacob M.J. Murre and published by Psychology Press. This book was released on 2014-02-25 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a new neural network model called CALM, for categorization and learning in neural networks. The author demonstrates how this model can learn the word superiority effect for letter recognition, and discusses a series of studies that simulate experiments in implicit and explicit memory, involving normal and amnesic patients. Pathological, but psychologically accurate, behavior is produced by "lesioning" the arousal system of these models. A concise introduction to genetic algorithms, a new computing method based on the biological metaphor of evolution, and a demonstration on how these algorithms can design network architectures with superior performance are included in this volume. The role of modularity in parallel hardware and software implementations is considered, including transputer networks and a dedicated 400-processor neurocomputer built by the developers of CALM in cooperation with Delft Technical University. Concluding with an evaluation of the psychological and biological plausibility of CALM models, the book offers a general discussion of catastrophic interference, generalization, and representational capacity of modular neural networks. Researchers in cognitive science, neuroscience, computer simulation sciences, parallel computer architectures, and pattern recognition will be interested in this volume, as well as anyone engaged in the study of neural networks, neurocomputers, and neurosimulators.
Book Synopsis Applications of Artificial Neural Networks for Nonlinear Data by : Patel, Hiral Ashil
Download or read book Applications of Artificial Neural Networks for Nonlinear Data written by Patel, Hiral Ashil and published by IGI Global. This book was released on 2020-09-25 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Processing information and analyzing data efficiently and effectively is crucial for any company that wishes to stay competitive in its respective market. Nonlinear data presents new challenges to organizations, however, due to its complexity and unpredictability. The only technology that can properly handle this form of data is artificial neural networks. These modeling systems present a high level of benefits in analyzing complex data in a proficient manner, yet considerable research on the specific applications of these intelligent components is significantly deficient. Applications of Artificial Neural Networks for Nonlinear Data is a collection of innovative research on the contemporary nature of artificial neural networks and their specific implementations within data analysis. While highlighting topics including propagation functions, optimization techniques, and learning methodologies, this book is ideally designed for researchers, statisticians, academicians, developers, scientists, practitioners, students, and educators seeking current research on the use of artificial neural networks in diagnosing and solving nonparametric problems.