Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Electronic Energy Bands In Solids
Download Electronic Energy Bands In Solids full books in PDF, epub, and Kindle. Read online Electronic Energy Bands In Solids ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Download or read book University Physics written by OpenStax and published by . This book was released on 2016-11-04 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
Book Synopsis Group Theory and Electronic Energy Bands in Solids by : J. F. Cornwell
Download or read book Group Theory and Electronic Energy Bands in Solids written by J. F. Cornwell and published by . This book was released on 1969 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Band Theory and Electronic Properties of Solids by : John Singleton
Download or read book Band Theory and Electronic Properties of Solids written by John Singleton and published by OUP Oxford. This book was released on 2001-08-30 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to band theory and the electronic properties of materials at a level suitable for final-year undergraduates or first-year graduate students. It sets out to provide the vocabulary and quantum-mechanical training necessary to understand the electronic, optical and structural properties of the materials met in science and technology and describes some of the experimental techniques which are used to study band structure today. In order to leave space for recent developments, the Drude model and the introduction of quantum statistics are treated synoptically. However, Bloch's theorem and two tractable limits, a very weak periodic potential and the tight-binding model, are developed rigorously and in three dimensions. Having introduced the ideas of bands, effective masses and holes, semiconductor and metals are treated in some detail, along with the newer ideas of artificial structures such as super-lattices and quantum wells, layered organic substances and oxides. Some recent `hot topics' in research are covered, e.g. the fractional Quantum Hall Effect and nano-devices, which can be understood using the techniques developed in the book. In illustrating examples of e.g. the de Haas-van Alphen effect, the book focuses on recent experimental data, showing that the field is a vibrant and exciting one. References to many recent review articles are provided, so that the student can conduct research into a chosen topic at a deeper level. Several appendices treating topics such as phonons and crystal structure make the book self-contained introduction to the fundamentals of band theory and electronic properties in condensed matter physic today.
Book Synopsis Electrons in Solids 2e by : Richard Bube
Download or read book Electrons in Solids 2e written by Richard Bube and published by Elsevier. This book was released on 2012-12-02 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrons in Solids, Second Edition: An Introductory Survey introduces the reader to electrons in solids and covers topics ranging from particles and waves to the free electron model, energy bands, and junctions. Optical and electrical properties are also discussed, along with magnetic properties. The wavelike properties of all of matter are chosen as an integrating theme into which to weave such themes as crystal lattice vibrations (with their effect on electron mobility and electrical and thermal conductivity), electromagnetic waves (with their effect on optical reflection and absorption), and electronic transport in solids (with its dependence on the wavelike properties of electrons). This book is comprised of 11 chapters and begins with an overview of particles and waves, together with classical views of electrons, light, and energy. The general properties of waves are then discussed, with particular reference to traveling waves, standing waves, transverse waves, and longitudinal waves. Lattice waves, light waves, and matter waves are also considered. The reader is also introduced to wave equations, boundary conditions, and general wave properties. The remaining chapters are devoted to optical, electrical, and magnetic properties as well as junctions, including metal-metal junctions, metal-semiconductor junctions, and metal-semiconductor junctions. This monograph is intended for undergraduates and first-year graduate students with a background primarily in materials science, metallurgy, or one of the other engineering disciplines.
Book Synopsis Handbook of the Band Structure of Elemental Solids by : Dimitris A. Papaconstantopoulos
Download or read book Handbook of the Band Structure of Elemental Solids written by Dimitris A. Papaconstantopoulos and published by Springer. This book was released on 2014-11-10 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook presents electronic structure data and tabulations of Slater-Koster parameters for the whole periodic table. This second edition presents data sets for all elements up to Z = 112, Copernicium, whereas the first edition contained only 53 elements. In this new edition, results are given for the equation of state of the elements together with the parameters of a Birch fit, so that the reader can regenerate the results and derive additional information, such as Pressure-Volume relations and variation of Bulk Modulus with Pressure. For each element, in addition to the equation of state, the energy bands, densities of states and a set of tight-binding parameters is provided. For a majority of elements, the tight-binding parameters are presented for both a two- and three-center approximation. For the hcp structure, new three-center tight-binding results are given. Other new material in this edition include: energy bands and densities of states of all rare-earth metals, a discussion of the McMillan-Gaspari-Gyorffy theories and a tabulation of the electron-ion interaction matrix elements. The evaluation of the Stoner criterion for ferromagnetism is examined and results are tabulated. This edition also contains two new appendices discussing the effects of spin-orbit interaction and a modified version of Harrison's tight-binding theory for metals which puts the theory on a quantitative basis.
Book Synopsis Electronic Structure of Organic Semiconductors by : Luís Alcácer
Download or read book Electronic Structure of Organic Semiconductors written by Luís Alcácer and published by Morgan & Claypool Publishers. This book was released on 2018-12-07 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in the perspective of an experimental chemist, this book puts together some fundamentals from chemistry, solid state physics and quantum chemistry, to help with understanding and predicting the electronic and optical properties of organic semiconductors, both polymers and small molecules. The text is intended to assist graduate students and researchers in the field of organic electronics to use theory to design more efficient materials for organic electronic devices such as organic solar cells, light emitting diodes and field effect transistors. After addressing some basic topics in solid state physics, a comprehensive introduction to molecular orbitals and band theory leads to a description of computational methods based on Hartree-Fock and density functional theory (DFT), for predicting geometry conformations, frontier levels and energy band structures. Topological defects and transport and optical properties are then addressed, and one of the most commonly used transparent conducting polymers, PEDOT:PSS, is described in some detail as a case study.
Book Synopsis Electronic Structure and the Properties of Solids by : Walter A. Harrison
Download or read book Electronic Structure and the Properties of Solids written by Walter A. Harrison and published by Courier Corporation. This book was released on 2012-03-08 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text offers basic understanding of the electronic structure of covalent and ionic solids, simple metals, transition metals and their compounds; also explains how to calculate dielectric, conducting, bonding properties.
Book Synopsis Electronic Properties of Crystalline Solids by : Richard Bube
Download or read book Electronic Properties of Crystalline Solids written by Richard Bube and published by Elsevier. This book was released on 2012-12-02 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic Properties of Crystalline Solids: An Introduction to Fundamentals discusses courses in the electronic properties of solids taught in the Department of Materials Science and Engineering at Stanford University. The book starts with a brief review of classical wave mechanics, discussing concept of waves and their role in the interactions of electrons, phonons, and photons. The book covers the free electron model for metals, and the origin, derivation, and properties of allowed and forbidden energy bands for electrons in crystalline materials. It also examines transport phenomena and optical effects in crystalline materials, including electrical conductivity, scattering phenomena, thermal conductivity, Hall and thermoelectric effects, magnetoresistance, optical absorption, photoconductivity, and other photoelectronic effects in both ideal and real materials. This book is intended for upper-level undergraduates in a science major, or for first- or second-year graduate students with an interest in the scientific basis for our understanding of properties of materials.
Book Synopsis Introduction to the Physics of Electrons in Solids by : Henri Alloul
Download or read book Introduction to the Physics of Electrons in Solids written by Henri Alloul and published by Springer Science & Business Media. This book was released on 2010-12-09 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook sets out to enable readers to understand fundamental aspects underlying quantum macroscopic phenomena in solids, primarily through the modern experimental techniques and results. The classic independent-electrons approach for describing the electronic structure in terms of energy bands helps explain the occurrence of metals, insulators and semiconductors. It is underlined that superconductivity and magnetism can only be understood by taking into account the interactions between electrons. The text recounts the experimental observations that have revealed the main properties of the superconductors and were essential to track its physical origin. While fundamental concepts are underlined, those which are required to describe the high technology applications, present or future, are emphasized as well. Problem sets involve experimental approaches and tools which support a practical understanding of the materials and their behaviour.
Book Synopsis Dirac Matter by : Bertrand Duplantier
Download or read book Dirac Matter written by Bertrand Duplantier and published by Birkhäuser. This book was released on 2017-01-25 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other materials than graphene, collectively known as "Dirac matter", and offer a thorough description of the merging transition of Dirac cones that occurs in the energy spectrum, in various experiments involving stretching of the microscopic hexagonal lattice; the third contribution, entitled "Quantum Transport in Graphene: Impurity Scattering as a Probe of the Dirac Spectrum", given by Hélène Bouchiat, a leading experimentalist in mesoscopic physics, with Sophie Guéron and Chuan Li, shows how measuring electrical transport, in particular magneto-transport in real graphene devices - contaminated by impurities and hence exhibiting a diffusive regime - allows one to deeply probe the Dirac nature of electrons. The last two contributions focus on topological insulators; in the authoritative "Experimental Signatures of Topological Insulators", Laurent Lévy reviews recent experimental progress in the physics of mercury-telluride samples under strain, which demonstrates that the surface of a three-dimensional topological insulator hosts a two-dimensional massless Dirac metal; the illuminating final contribution by David Carpentier, entitled "Topology of Bands in Solids: From Insulators to Dirac Matter", provides a geometric description of Bloch wave functions in terms of Berry phases and parallel transport, and of their topological classification in terms of invariants such as Chern numbers, and ends with a perspective on three-dimensional semi-metals as described by the Weyl equation. This book will be of broad general interest to physicists, mathematicians, and historians of science.
Book Synopsis Atomic and Electronic Structure of Solids by : Efthimios Kaxiras
Download or read book Atomic and Electronic Structure of Solids written by Efthimios Kaxiras and published by Cambridge University Press. This book was released on 2003-01-09 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate-level textbook for physicists, chemists and materials scientists.
Book Synopsis Electronic Properties of Materials by : Rolf E. Hummel
Download or read book Electronic Properties of Materials written by Rolf E. Hummel and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book on electrical, optical, magnetic and thermal properties of materials is in many aspects different from other introductory texts in solid state physics. First of all, this book is written for engineers, particularly materials and electrical engineers who want to gain a fundamental under standing of semiconductor devices, magnetic materials, lasers, alloys, etc. Second, it stresses concepts rather than mathematical formalism, which should make the presentation relatively easy to understand. Thus, this book provides a thorough preparation for advanced texts, monographs, or special ized journal articles. Third, this book is not an encyclopedia. The selection oftopics is restricted to material which is considered to be essential and which can be covered in a 15-week semester course. For those professors who want to teach a two-semester course, supplemental topics can be found which deepen the understanding. (These sections are marked by an asterisk [*]. ) Fourth, the present text leaves the teaching of crystallography, X-ray diffrac tion, diffusion, lattice defects, etc. , to those courses which specialize in these subjects. As a rule, engineering students learn this material at the beginning of their upper division curriculum. The reader is, however, reminded of some of these topics whenever the need arises. Fifth, this book is distinctly divided into five self-contained parts which may be read independently.
Book Synopsis Basic Semiconductor Physics by : Chihiro Hamaguchi
Download or read book Basic Semiconductor Physics written by Chihiro Hamaguchi and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed description of the basic physics of semiconductors. All the important equations describing the properties of these materials are derived without the help of other textbooks. The reader is assumed to have only a basic command of mathematics and some elementary semiconductor physics. The text covers a wide range of important semiconductor phenomena, from the simple to the advanced.
Book Synopsis Electronic Energy Bands in Solids by : L. Pincherle
Download or read book Electronic Energy Bands in Solids written by L. Pincherle and published by . This book was released on 1971 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Electronic Structure Calculations for Solids and Molecules by : Jorge Kohanoff
Download or read book Electronic Structure Calculations for Solids and Molecules written by Jorge Kohanoff and published by Cambridge University Press. This book was released on 2006-06-29 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic structure problems are studied in condensed matter physics and theoretical chemistry to provide important insights into the properties of matter. This 2006 graduate textbook describes the main theoretical approaches and computational techniques, from the simplest approximations to the most sophisticated methods. It starts with a detailed description of the various theoretical approaches to calculating the electronic structure of solids and molecules, including density-functional theory and chemical methods based on Hartree-Fock theory. The basic approximations are thoroughly discussed, and an in-depth overview of recent advances and alternative approaches in DFT is given. The second part discusses the different practical methods used to solve the electronic structure problem computationally, for both DFT and Hartree-Fock approaches. Adopting a unique and open approach, this textbook is aimed at graduate students in physics and chemistry, and is intended to improve communication between these communities. It also serves as a reference for researchers entering the field.
Book Synopsis Physics Of Electrons In Solids by : Jean-claude Toledano
Download or read book Physics Of Electrons In Solids written by Jean-claude Toledano and published by World Scientific. This book was released on 2021-06-02 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Primarily aiming to give undergraduate students an introduction to solid state physics, Physics of Electrons in Solids explains the properties of solids through the study of non-interacting electrons in solids. While each chapter contains a qualitative introduction to the main ideas behind solid state physics, it also provides detailed calculations of utmost importance to graduate students.The introductory chapters contain crystallographic and quantum prerequisites. The central chapters are devoted to the quantum states of an independent electron in a crystal and to the equilibrium properties of conductors, insulators, and semiconductors. The final chapters contain insights into the assumptions made throughout, briefly describing the origin of ferromagnetism and superconductivity. The book ends with exercises and solutions based on a physics course taught by the author at École Polytechnique.
Book Synopsis Optical Properties of Solids by : Frederick Wooten
Download or read book Optical Properties of Solids written by Frederick Wooten and published by Academic Press. This book was released on 2013-10-22 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed. The book further tackles current-current correlations; the fluctuation-dissipation theorem; and the effect of surface plasmons on optical properties and photoemission. People involved in the study of the optical properties of solids will find the book invaluable.