Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Electromagnetic Computation Methods For Lightning Surge Protection Studies
Download Electromagnetic Computation Methods For Lightning Surge Protection Studies full books in PDF, epub, and Kindle. Read online Electromagnetic Computation Methods For Lightning Surge Protection Studies ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Electromagnetic Computation Methods for Lightning Surge Protection Studies by : Yoshihiro Baba
Download or read book Electromagnetic Computation Methods for Lightning Surge Protection Studies written by Yoshihiro Baba and published by John Wiley & Sons. This book was released on 2016-04-25 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents current research into electromagnetic computation theories with particular emphasis on Finite-Difference Time-Domain Method This book is the first to consolidate current research and to examine the theories of electromagnetic computation methods in relation to lightning surge protection. The authors introduce and compare existing electromagnetic computation methods such as the method of moments (MOM), the partial element equivalent circuit (PEEC), the finite element method (FEM), the transmission-line modeling (TLM) method, and the finite-difference time-domain (FDTD) method. The application of FDTD method to lightning protection studies is a topic that has matured through many practical applications in the past decade, and the authors explain the derivation of Maxwell’s equations required by the FDTD, and modeling of various electrical components needed in computing lightning electromagnetic fields and surges with the FDTD method. The book describes the application of FDTD method to current and emerging problems of lightning surge protection of continuously more complex installations, particularly in critical infrastructures of energy and information, such as overhead power lines, air-insulated sub-stations, wind turbine generator towers and telecommunication towers. Both authors are internationally recognized experts in the area of lightning study and this is the first book to present current research in lightning surge protection Examines in detail why lightning surges occur and what can be done to protect against them Includes theories of electromagnetic computation methods and many examples of their application Accompanied by a sample printed program based on the finite-difference time-domain (FDTD) method written in C++ program
Book Synopsis Electromagnetic Computation Methods for Lightning Surge Protection Studies by : Yoshihiro Baba
Download or read book Electromagnetic Computation Methods for Lightning Surge Protection Studies written by Yoshihiro Baba and published by . This book was released on 2016 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Presents current research into electromagnetic computation theories with particular emphasis on Finite-Difference Time-Domain Method This book is the first to consolidate current research and to examine the theories of electromagnetic computation methods in relation to lightning surge protection. The authors introduce and compare existing electromagnetic computation methods such as the method of moments (MOM), the partial element equivalent circuit (PEEC), the finite element method (FEM), the transmission-line modeling (TLM) method, and the finite-difference time-domain (FDTD) method. The application of FDTD method to lightning protection studies is a topic that has matured through many practical applications in the past decade, and the authors explain the derivation of Maxwell's equations required by the FDTD, and modeling of various electrical components needed in computing lightning electromagnetic fields and surges with the FDTD method. The book describes the application of FDTD method to current and emerging problems of lightning surge protection of continuously more complex installations, particularly in critical infrastructures of energy and information, such as overhead power lines, air-insulated sub-stations, wind turbine generator towers and telecommunication towers. Both authors are internationally recognized experts in the area of lightning study and this is the first book to present current research in lightning surge protection Examines in detail why lightning surges occur and what can be done to protect against them Includes theories of electromagnetic computation methods and many examples of their application Accompanied by a sample printed program based on the finite-difference time-domain (FDTD) method written in C++ program "--
Book Synopsis Computational Electromagnetics with MATLAB, Fourth Edition by : Matthew N.O. Sadiku
Download or read book Computational Electromagnetics with MATLAB, Fourth Edition written by Matthew N.O. Sadiku and published by CRC Press. This book was released on 2018-07-20 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fourth edition of the text reflects the continuing increase in awareness and use of computational electromagnetics and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. It teaches the readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism. Includes new homework problems in each chapter. Each chapter is updated with the current trends in CEM. Adds a new appendix on CEM codes, which covers commercial and free codes. Provides updated MATLAB code.
Download or read book The Engineering Index Annual written by and published by . This book was released on 1988 with total page 2282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its creation in 1884, Engineering Index has covered virtually every major engineering innovation from around the world. It serves as the historical record of virtually every major engineering innovation of the 20th century. Recent content is a vital resource for current awareness, new production information, technological forecasting and competitive intelligence. The world?s most comprehensive interdisciplinary engineering database, Engineering Index contains over 10.7 million records. Each year, over 500,000 new abstracts are added from over 5,000 scholarly journals, trade magazines, and conference proceedings. Coverage spans over 175 engineering disciplines from over 80 countries. Updated weekly.
Book Synopsis The Nystrom Method in Electromagnetics by : Mei Song Tong
Download or read book The Nystrom Method in Electromagnetics written by Mei Song Tong and published by John Wiley & Sons. This book was released on 2020-06-29 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, step-by-step reference to the Nyström Method for solving Electromagnetic problems using integral equations Computational electromagnetics studies the numerical methods or techniques that solve electromagnetic problems by computer programming. Currently, there are mainly three numerical methods for electromagnetic problems: the finite-difference time-domain (FDTD), finite element method (FEM), and integral equation methods (IEMs). In the IEMs, the method of moments (MoM) is the most widely used method, but much attention is being paid to the Nyström method as another IEM, because it possesses some unique merits which the MoM lacks. This book focuses on that method—providing information on everything that students and professionals working in the field need to know. Written by the top researchers in electromagnetics, this complete reference book is a consolidation of advances made in the use of the Nyström method for solving electromagnetic integral equations. It begins by introducing the fundamentals of the electromagnetic theory and computational electromagnetics, before proceeding to illustrate the advantages unique to the Nyström method through rigorous worked out examples and equations. Key topics include quadrature rules, singularity treatment techniques, applications to conducting and penetrable media, multiphysics electromagnetic problems, time-domain integral equations, inverse scattering problems and incorporation with multilevel fast multiple algorithm. Systematically introduces the fundamental principles, equations, and advantages of the Nyström method for solving electromagnetic problems Features the unique benefits of using the Nyström method through numerical comparisons with other numerical and analytical methods Covers a broad range of application examples that will point the way for future research The Nystrom Method in Electromagnetics is ideal for graduate students, senior undergraduates, and researchers studying engineering electromagnetics, computational methods, and applied mathematics. Practicing engineers and other industry professionals working in engineering electromagnetics and engineering mathematics will also find it to be incredibly helpful.
Book Synopsis Computational Methods in Electromagnetic Compatibility by : Dragan Poljak
Download or read book Computational Methods in Electromagnetic Compatibility written by Dragan Poljak and published by John Wiley & Sons. This book was released on 2018-04-24 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a comprehensive overview of the recent advances in the area of computational electromagnetics Computational Method in Electromagnetic Compatibility offers a review of the most recent advances in computational electromagnetics. The authors—noted experts in the field—examine similar problems by taking different approaches related to antenna theory models and transmission line methods. They discuss various solution methods related to boundary integral equation techniques and finite difference techniques. The topics covered are related to realistic antenna systems including antennas for air traffic control or ground penetrating radar antennas; grounding systems (such as grounding systems for wind turbines); biomedical applications of electromagnetic fields (such as transcranial magnetic stimulation); and much more. The text features a number of illustrative computational examples and a reference list at the end of each chapter. The book is grounded in a rigorous theoretical approach and offers mathematical details of the formulations and solution methods. This important text: Provides a trade-off between a highly efficient transmission line approach and antenna theory models providing analysis of high frequency and transient phenomena Contains the newest information on EMC analysis and design principles Discusses electromagnetic field coupling to thin wire configurations and modeling in bioelectromagnetics Written for engineering students, senior researchers and practicing electrical engineers, Computational Method in Electromagnetic Compatibility provides a valuable resource in the design of equipment working in a common electromagnetic environment.
Book Synopsis Computational Methods for Electromagnetic Inverse Scattering by : Xudong Chen
Download or read book Computational Methods for Electromagnetic Inverse Scattering written by Xudong Chen and published by John Wiley & Sons. This book was released on 2018-07-18 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and updated overview of the theory, algorithms and applications of for electromagnetic inverse scattering problems Offers the recent and most important advances in inverse scattering grounded in fundamental theory, algorithms and practical engineering applications Covers the latest, most relevant inverse scattering techniques like signal subspace methods, time reversal, linear sampling, qualitative methods, compressive sensing, and noniterative methods Emphasizes theory, mathematical derivation and physical insights of various inverse scattering problems Written by a leading expert in the field
Book Synopsis Electromagnetic Compatibility, 1979 by : Tomáš Dvořák
Download or read book Electromagnetic Compatibility, 1979 written by Tomáš Dvořák and published by . This book was released on 1979 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB by : Sergey N. Makarov
Download or read book Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB written by Sergey N. Makarov and published by John Wiley & Sons. This book was released on 2015-05-13 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB® modules with user-friendly and intuitive GUI and a highly visualized interactive output. Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project® Female dataset of the National library of Medicine and fully compatible with MATLAB® and major commercial FEM/BEM electromagnetic software simulators. This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB® modules. Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications.
Book Synopsis The Lightning Flash by : Vernon Cooray
Download or read book The Lightning Flash written by Vernon Cooray and published by IET. This book was released on 2003 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book provides the reader with a thorough background in almost every aspect of lightning and its impact on electrical and electronic equipment. The contents range from basic discharge processes in air through transient electromagnetic field generation and interaction with overhead lines and underground cables, to lightning protection and testing techniques. This book is of value to anyone designing, installing or commissioning equipment which needs to be secured against lightning strikes, as well as being a sound introduction to research students working in the field.
Book Synopsis The Finite Element Method for Electromagnetic Modeling by : Gérard Meunier
Download or read book The Finite Element Method for Electromagnetic Modeling written by Gérard Meunier and published by John Wiley & Sons. This book was released on 2010-01-05 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by specialists of modeling in electromagnetism, this book provides a comprehensive review of the finite element method for low frequency applications. Fundamentals of the method as well as new advances in the field are described in detail. Chapters 1 to 4 present general 2D and 3D static and dynamic formulations by the use of scalar and vector unknowns and adapted interpolations for the fields (nodal, edge, face or volume). Chapter 5 is dedicated to the presentation of different macroscopic behavior laws of materials and their implementation in a finite element context: anisotropy and hysteretic properties for magnetic sheets, iron losses, non-linear permanent magnets and superconductors. More specific formulations are then proposed: the modeling of thin regions when finite elements become misfit (Chapter 6), infinite domains by using geometrical transformations (Chapter 7), the coupling of 2D and 3D formulations with circuit equations (Chapter 8), taking into account the movement, particularly in the presence of Eddy currents (Chapter 9) and an original approach for the treatment of geometrical symmetries when the sources are not symmetric (Chapter 10). Chapters 11 to 13 are devoted to coupled problems: magneto-thermal coupling for induction heating, magneto-mechanical coupling by introducing the notion of strong and weak coupling and magneto-hydrodynamical coupling focusing on electromagnetic instabilities in fluid conductors. Chapter 14 presents different meshing methods in the context of electromagnetism (presence of air) and introduces self-adaptive mesh refinement procedures. Optimization techniques are then covered in Chapter 15, with the adaptation of deterministic and probabilistic methods to the numerical finite element environment. Chapter 16 presents a variational approach of electromagnetism, showing how Maxwell equations are derived from thermodynamic principles.
Book Synopsis Lightning: Principles, Instruments and Applications by : Hans Dieter Betz
Download or read book Lightning: Principles, Instruments and Applications written by Hans Dieter Betz and published by Springer Science & Business Media. This book was released on 2008-12-04 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lightning represents a natural phenomenon of substantial interest. Due to its complex nature, research continues in many countries and reveals amazing results. Lightning is actively observed because of its relevance to Earth climate and air composition in addition to the classical aspects of related human fatalities and damage to forests, buildings, power lines, aircraft, structures and electronic devices. In this volume, the most important contemporary questions on lightning are addressed and analyzed under many experimental and theoretical aspects. Lightning detection techniques using ground-based and space-borne methods are described, along with network engineering and statistical analysis. Contributions detail research on atmospheric electricity, cloud physics, lightning physics, modeling of electrical storms and middle atmospheric events. Special phenomena such as triggered lightning and sprite observations are examined. Lightning-induced nitrogen oxides and their effects on atmospheric chemistry and climate are discussed. Each topic is presented by international experts in the field. Topics include: * air chemistry * convective storms * infrasound from lightning * lightning and climate change * lightning and precipitation * lightning and radiation * lightning and supercells * lightning and thunderstorms * lightning detection * lightning from space * lighting protection * lightning return strokes * observations and interpretations * spatial distribution and frequency * triggered lightning * weather extremes
Book Synopsis Electrical & Electronics Abstracts by :
Download or read book Electrical & Electronics Abstracts written by and published by . This book was released on 1997 with total page 1904 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Science Abstracts written by and published by . This book was released on 1995 with total page 1360 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Physics and Mathematics of Electromagnetic Wave Propagation in Cellular Wireless Communication by : Tapan K. Sarkar
Download or read book The Physics and Mathematics of Electromagnetic Wave Propagation in Cellular Wireless Communication written by Tapan K. Sarkar and published by John Wiley & Sons. This book was released on 2018-07-18 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: An important resource that examines the physical aspects of wireless communications based on mathematical and physical evidence The Physics and Mathematics of Electromagnetic Wave Propagation in Cellular Wireless Communicationdescribes the electromagnetic principles for designing a cellular wireless system and includes the subtle electromagnetic principles that are often overlooked in designing such a system. This important text explores both the physics and mathematical concepts used in deploying antennas for transmission and reception of electromagnetic signals and examines how to select the proper methodology from a wide range of scenarios. In this much-needed guide, the authors—noted experts in the field—explore the principle of electromagnetics as developed through the Maxwellian principles and describe the properties of an antenna in the frequency domain. The text also includes a review of the characterization of propagation path loss in a cellular wireless environment and examines ultrawideband antennas and the mechanisms of broadband transmission of both power and information. This important resource: Includes a discussion of the shortcomings of a MIMO system from both theoretical and practical aspects Demonstrates how to deploy base station antennas with better efficiency Validates the principle and the theoretical analysis of electromagnetic propagation in cellular wireless communication Contains results of experiments that are solidly grounded in mathematics and physics Written for engineers, researchers, and educators who are or plan to work in the field, The Physics and Mathematics of Electromagnetic Wave Propagation in Cellular Wireless Communicationoffers an essential resource for understanding the principles underpinning wireless communications.
Book Synopsis Power System Transients by : Juan A. Martinez-Velasco
Download or read book Power System Transients written by Juan A. Martinez-Velasco and published by CRC Press. This book was released on 2017-12-19 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the powerful numerical techniques and graphical user interfaces available in present software tools for power system transients, a lack of reliable tests and conversion procedures generally makes determination of parameters the most challenging part of creating a model. Illustrates Parameter Determination for Real-World Applications Geared toward both students and professionals with at least some basic knowledge of electromagnetic transient analysis, Power System Transients: Parameter Determination summarizes current procedures and techniques for the determination of transient parameters for six basic power components: overhead line, insulated cable, transformer, synchronous machine, surge arrester, and circuit breaker. An expansion on papers published in the IEEE Transactions on Power Delivery, this text helps those using transient simulation tools (e.g., EMTP-like tools) to select the optimal determination method for their particular model, and it addresses commonly encountered problems, including: Lack of information Testing setups and measurements that are not recognized in international standards Insufficient studies to validate models, mainly those used in high-frequency transients Current built-in models that do not cover all requirements Illustrated with case studies, this book provides modeling guidelines for the selection of adequate representations for main components. It discusses how to collect the information needed to obtain model parameters and also reviews procedures for deriving them. Appendices summarize updated techniques for identifying linear systems from frequency responses and review capabilities and limitations of simulation tools. Emphasizing standards, this book is a clear and concise presentation of key aspects in creating an adequate and reliable transient model.
Book Synopsis Transactions of the American Institute of Electrical Engineers by :
Download or read book Transactions of the American Institute of Electrical Engineers written by and published by . This book was released on 1960 with total page 906 pages. Available in PDF, EPUB and Kindle. Book excerpt: