Elastic Shape Analysis of Three-Dimensional Objects

Download Elastic Shape Analysis of Three-Dimensional Objects PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031018192
Total Pages : 169 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Elastic Shape Analysis of Three-Dimensional Objects by : Ian H. Jermyn

Download or read book Elastic Shape Analysis of Three-Dimensional Objects written by Ian H. Jermyn and published by Springer Nature. This book was released on 2022-05-31 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical analysis of shapes of 3D objects is an important problem with a wide range of applications. This analysis is difficult for many reasons, including the fact that objects differ in both geometry and topology. In this manuscript, we narrow the problem by focusing on objects with fixed topology, say objects that are diffeomorphic to unit spheres, and develop tools for analyzing their geometries. The main challenges in this problem are to register points across objects and to perform analysis while being invariant to certain shape-preserving transformations. We develop a comprehensive framework for analyzing shapes of spherical objects, i.e., objects that are embeddings of a unit sphere in ℝ, including tools for: quantifying shape differences, optimally deforming shapes into each other, summarizing shape samples, extracting principal modes of shape variability, and modeling shape variability associated with populations. An important strength of this framework is that it is elastic: it performs alignment, registration, and comparison in a single unified framework, while being invariant to shape-preserving transformations. The approach is essentially Riemannian in the following sense. We specify natural mathematical representations of surfaces of interest, and impose Riemannian metrics that are invariant to the actions of the shape-preserving transformations. In particular, they are invariant to reparameterizations of surfaces. While these metrics are too complicated to allow broad usage in practical applications, we introduce a novel representation, termed square-root normal fields (SRNFs), that transform a particular invariant elastic metric into the standard L2 metric. As a result, one can use standard techniques from functional data analysis for registering, comparing, and summarizing shapes. Specifically, this results in: pairwise registration of surfaces; computation of geodesic paths encoding optimal deformations; computation of Karcher means and covariances under the shape metric; tangent Principal Component Analysis (PCA) and extraction of dominant modes of variability; and finally, modeling of shape variability using wrapped normal densities. These ideas are demonstrated using two case studies: the analysis of surfaces denoting human bodies in terms of shape and pose variability; and the clustering and classification of the shapes of subcortical brain structures for use in medical diagnosis. This book develops these ideas without assuming advanced knowledge in differential geometry and statistics. We summarize some basic tools from differential geometry in the appendices, and introduce additional concepts and terminology as needed in the individual chapters.

Functional and Shape Data Analysis

Download Functional and Shape Data Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493940201
Total Pages : 454 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Functional and Shape Data Analysis by : Anuj Srivastava

Download or read book Functional and Shape Data Analysis written by Anuj Srivastava and published by Springer. This book was released on 2016-10-03 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling future scientific challenges. Recently, a data-driven and application-oriented focus on shape analysis has been trending. This text offers a self-contained treatment of this new generation of methods in shape analysis of curves. Its main focus is shape analysis of functions and curves—in one, two, and higher dimensions—both closed and open. It develops elegant Riemannian frameworks that provide both quantification of shape differences and registration of curves at the same time. Additionally, these methods are used for statistically summarizing given curve data, performing dimension reduction, and modeling observed variability. It is recommended that the reader have a background in calculus, linear algebra, numerical analysis, and computation.

Geometric Science of Information

Download Geometric Science of Information PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030269809
Total Pages : 764 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Geometric Science of Information by : Frank Nielsen

Download or read book Geometric Science of Information written by Frank Nielsen and published by Springer. This book was released on 2019-08-19 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 4th International Conference on Geometric Science of Information, GSI 2019, held in Toulouse, France, in August 2019. The 79 full papers presented in this volume were carefully reviewed and selected from 105 submissions. They cover all the main topics and highlights in the domain of geometric science of information, including information geometry manifolds of structured data/information and their advanced applications.

Geometry Driven Statistics

Download Geometry Driven Statistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118866606
Total Pages : 436 pages
Book Rating : 4.1/5 (188 download)

DOWNLOAD NOW!


Book Synopsis Geometry Driven Statistics by : Ian L. Dryden

Download or read book Geometry Driven Statistics written by Ian L. Dryden and published by John Wiley & Sons. This book was released on 2015-09-03 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely collection of advanced, original material in the area of statistical methodology motivated by geometric problems, dedicated to the influential work of Kanti V. Mardia This volume celebrates Kanti V. Mardia's long and influential career in statistics. A common theme unifying much of Mardia’s work is the importance of geometry in statistics, and to highlight the areas emphasized in his research this book brings together 16 contributions from high-profile researchers in the field. Geometry Driven Statistics covers a wide range of application areas including directional data, shape analysis, spatial data, climate science, fingerprints, image analysis, computer vision and bioinformatics. The book will appeal to statisticians and others with an interest in data motivated by geometric considerations. Summarizing the state of the art, examining some new developments and presenting a vision for the future, Geometry Driven Statistics will enable the reader to broaden knowledge of important research areas in statistics and gain a new appreciation of the work and influence of Kanti V. Mardia.

Academic Press Library in Signal Processing, Volume 6

Download Academic Press Library in Signal Processing, Volume 6 PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128119004
Total Pages : 460 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Academic Press Library in Signal Processing, Volume 6 by :

Download or read book Academic Press Library in Signal Processing, Volume 6 written by and published by Academic Press. This book was released on 2017-11-28 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Academic Press Library in Signal Processing, Volume 6: Image and Video Processing and Analysis and Computer Vision is aimed at university researchers, post graduate students and R&D engineers in the industry, providing a tutorial-based, comprehensive review of key topics and technologies of research in both image and video processing and analysis and computer vision. The book provides an invaluable starting point to the area through the insight and understanding that it provides. With this reference, readers will quickly grasp an unfamiliar area of research, understand the underlying principles of a topic, learn how a topic relates to other areas, and learn of research issues yet to be resolved. - Presents a quick tutorial of reviews of important and emerging topics of research - Explores core principles, technologies, algorithms and applications - Edited and contributed by international leading figures in the field - Includes comprehensive references to journal articles and other literature upon which to build further, more detailed knowledge

Variational Methods

Download Variational Methods PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110430495
Total Pages : 621 pages
Book Rating : 4.1/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Variational Methods by : Maïtine Bergounioux

Download or read book Variational Methods written by Maïtine Bergounioux and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-01-11 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a focus on the interplay between mathematics and applications of imaging, the first part covers topics from optimization, inverse problems and shape spaces to computer vision and computational anatomy. The second part is geared towards geometric control and related topics, including Riemannian geometry, celestial mechanics and quantum control. Contents: Part I Second-order decomposition model for image processing: numerical experimentation Optimizing spatial and tonal data for PDE-based inpainting Image registration using phase・amplitude separation Rotation invariance in exemplar-based image inpainting Convective regularization for optical flow A variational method for quantitative photoacoustic tomography with piecewise constant coefficients On optical flow models for variational motion estimation Bilevel approaches for learning of variational imaging models Part II Non-degenerate forms of the generalized Euler・Lagrange condition for state-constrained optimal control problems The Purcell three-link swimmer: some geometric and numerical aspects related to periodic optimal controls Controllability of Keplerian motion with low-thrust control systems Higher variational equation techniques for the integrability of homogeneous potentials Introduction to KAM theory with a view to celestial mechanics Invariants of contact sub-pseudo-Riemannian structures and Einstein・Weyl geometry Time-optimal control for a perturbed Brockett integrator Twist maps and Arnold diffusion for diffeomorphisms A Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part I Index

New Advances in Statistics and Data Science

Download New Advances in Statistics and Data Science PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319694162
Total Pages : 355 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis New Advances in Statistics and Data Science by : Ding-Geng Chen

Download or read book New Advances in Statistics and Data Science written by Ding-Geng Chen and published by Springer. This book was released on 2018-01-17 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is comprised of the presentations delivered at the 25th ICSA Applied Statistics Symposium held at the Hyatt Regency Atlanta, on June 12-15, 2016. This symposium attracted more than 700 statisticians and data scientists working in academia, government, and industry from all over the world. The theme of this conference was the “Challenge of Big Data and Applications of Statistics,” in recognition of the advent of big data era, and the symposium offered opportunities for learning, receiving inspirations from old research ideas and for developing new ones, and for promoting further research collaborations in the data sciences. The invited contributions addressed rich topics closely related to big data analysis in the data sciences, reflecting recent advances and major challenges in statistics, business statistics, and biostatistics. Subsequently, the six editors selected 19 high-quality presentations and invited the speakers to prepare full chapters for this book, which showcases new methods in statistics and data sciences, emerging theories, and case applications from statistics, data science and interdisciplinary fields. The topics covered in the book are timely and have great impact on data sciences, identifying important directions for future research, promoting advanced statistical methods in big data science, and facilitating future collaborations across disciplines and between theory and practice.

Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2

Download Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2 PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444641416
Total Pages : 706 pages
Book Rating : 4.4/5 (446 download)

DOWNLOAD NOW!


Book Synopsis Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2 by :

Download or read book Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2 written by and published by Elsevier. This book was released on 2019-10-16 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2, Volume 20, surveys the contemporary developments relating to the analysis and learning of images, shapes and forms, covering mathematical models and quick computational techniques. Chapter cover Alternating Diffusion: A Geometric Approach for Sensor Fusion, Generating Structured TV-based Priors and Associated Primal-dual Methods, Graph-based Optimization Approaches for Machine Learning, Uncertainty Quantification and Networks, Extrinsic Shape Analysis from Boundary Representations, Efficient Numerical Methods for Gradient Flows and Phase-field Models, Recent Advances in Denoising of Manifold-Valued Images, Optimal Registration of Images, Surfaces and Shapes, and much more. - Covers contemporary developments relating to the analysis and learning of images, shapes and forms - Presents mathematical models and quick computational techniques relating to the topic - Provides broad coverage, with sample chapters presenting content on Alternating Diffusion and Generating Structured TV-based Priors and Associated Primal-dual Methods

Shape Perception in Human and Computer Vision

Download Shape Perception in Human and Computer Vision PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 144715195X
Total Pages : 505 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Shape Perception in Human and Computer Vision by : Sven J. Dickinson

Download or read book Shape Perception in Human and Computer Vision written by Sven J. Dickinson and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive and authoritative text/reference presents a unique, multidisciplinary perspective on Shape Perception in Human and Computer Vision. Rather than focusing purely on the state of the art, the book provides viewpoints from world-class researchers reflecting broadly on the issues that have shaped the field. Drawing upon many years of experience, each contributor discusses the trends followed and the progress made, in addition to identifying the major challenges that still lie ahead. Topics and features: examines each topic from a range of viewpoints, rather than promoting a specific paradigm; discusses topics on contours, shape hierarchies, shape grammars, shape priors, and 3D shape inference; reviews issues relating to surfaces, invariants, parts, multiple views, learning, simplicity, shape constancy and shape illusions; addresses concepts from the historically separate disciplines of computer vision and human vision using the same “language” and methods.

Handbook of Variational Methods for Nonlinear Geometric Data

Download Handbook of Variational Methods for Nonlinear Geometric Data PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030313514
Total Pages : 703 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Variational Methods for Nonlinear Geometric Data by : Philipp Grohs

Download or read book Handbook of Variational Methods for Nonlinear Geometric Data written by Philipp Grohs and published by Springer Nature. This book was released on 2020-04-03 with total page 703 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers different, current research directions in the context of variational methods for non-linear geometric data. Each chapter is authored by leading experts in the respective discipline and provides an introduction, an overview and a description of the current state of the art. Non-linear geometric data arises in various applications in science and engineering. Examples of nonlinear data spaces are diverse and include, for instance, nonlinear spaces of matrices, spaces of curves, shapes as well as manifolds of probability measures. Applications can be found in biology, medicine, product engineering, geography and computer vision for instance. Variational methods on the other hand have evolved to being amongst the most powerful tools for applied mathematics. They involve techniques from various branches of mathematics such as statistics, modeling, optimization, numerical mathematics and analysis. The vast majority of research on variational methods, however, is focused on data in linear spaces. Variational methods for non-linear data is currently an emerging research topic. As a result, and since such methods involve various branches of mathematics, there is a plethora of different, recent approaches dealing with different aspects of variational methods for nonlinear geometric data. Research results are rather scattered and appear in journals of different mathematical communities. The main purpose of the book is to account for that by providing, for the first time, a comprehensive collection of different research directions and existing approaches in this context. It is organized in a way that leading researchers from the different fields provide an introductory overview of recent research directions in their respective discipline. As such, the book is a unique reference work for both newcomers in the field of variational methods for non-linear geometric data, as well as for established experts that aim at to exploit new research directions or collaborations. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.

Riemannian Computing in Computer Vision

Download Riemannian Computing in Computer Vision PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319229575
Total Pages : 382 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Riemannian Computing in Computer Vision by : Pavan K. Turaga

Download or read book Riemannian Computing in Computer Vision written by Pavan K. Turaga and published by Springer. This book was released on 2015-11-09 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive treatise on Riemannian geometric computations and related statistical inferences in several computer vision problems. This edited volume includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the mathematical entities that necessitate a geometric analysis include rotation matrices (e.g. in modeling camera motion), stick figures (e.g. for activity recognition), subspace comparisons (e.g. in face recognition), symmetric positive-definite matrices (e.g. in diffusion tensor imaging), and function-spaces (e.g. in studying shapes of closed contours).

Regression and Fitting on Manifold-valued Data

Download Regression and Fitting on Manifold-valued Data PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031617126
Total Pages : 180 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Regression and Fitting on Manifold-valued Data by : Ines Adouani

Download or read book Regression and Fitting on Manifold-valued Data written by Ines Adouani and published by Springer Nature. This book was released on with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Computer Vision – ECCV 2012

Download Computer Vision – ECCV 2012 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642337155
Total Pages : 897 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision – ECCV 2012 by : Andrew Fitzgibbon

Download or read book Computer Vision – ECCV 2012 written by Andrew Fitzgibbon and published by Springer. This book was released on 2012-09-26 with total page 897 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seven-volume set comprising LNCS volumes 7572-7578 constitutes the refereed proceedings of the 12th European Conference on Computer Vision, ECCV 2012, held in Florence, Italy, in October 2012. The 408 revised papers presented were carefully reviewed and selected from 1437 submissions. The papers are organized in topical sections on geometry, 2D and 3D shapes, 3D reconstruction, visual recognition and classification, visual features and image matching, visual monitoring: action and activities, models, optimisation, learning, visual tracking and image registration, photometry: lighting and colour, and image segmentation.

Computer Vision -- ACCV 2014

Download Computer Vision -- ACCV 2014 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319168088
Total Pages : 722 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision -- ACCV 2014 by : Daniel Cremers

Download or read book Computer Vision -- ACCV 2014 written by Daniel Cremers and published by Springer. This book was released on 2015-04-15 with total page 722 pages. Available in PDF, EPUB and Kindle. Book excerpt: The five-volume set LNCS 9003--9007 constitutes the thoroughly refereed post-conference proceedings of the 12th Asian Conference on Computer Vision, ACCV 2014, held in Singapore, Singapore, in November 2014. The total of 227 contributions presented in these volumes was carefully reviewed and selected from 814 submissions. The papers are organized in topical sections on recognition; 3D vision; low-level vision and features; segmentation; face and gesture, tracking; stereo, physics, video and events; and poster sessions 1-3.

3D Face Modeling, Analysis and Recognition

Download 3D Face Modeling, Analysis and Recognition PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118592638
Total Pages : 219 pages
Book Rating : 4.1/5 (185 download)

DOWNLOAD NOW!


Book Synopsis 3D Face Modeling, Analysis and Recognition by : Mohamed Daoudi

Download or read book 3D Face Modeling, Analysis and Recognition written by Mohamed Daoudi and published by John Wiley & Sons. This book was released on 2013-06-11 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: 3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application scenarios expected as the discipline develops further. The book covers face acquisition through 3D scanners and 3D face pre-processing, before examining the three main approaches for 3D facial surface analysis and recognition: facial curves; facial surface features; and 3D morphable models. Whilst the focus of these chapters is fundamentals and methodologies, the algorithms provided are tested on facial biometric data, thereby continually showing how the methods can be applied. Key features: • Explores the underlying mathematics and will apply these mathematical techniques to 3D face analysis and recognition • Provides coverage of a wide range of applications including biometrics, forensic applications, facial expression analysis, and model fitting to 2D images • Contains numerous exercises and algorithms throughout the book

Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Download Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030986616
Total Pages : 1981 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging by : Ke Chen

Download or read book Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging written by Ke Chen and published by Springer Nature. This book was released on 2023-02-24 with total page 1981 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision. Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.

3D Shape Analysis

Download 3D Shape Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119405106
Total Pages : 368 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis 3D Shape Analysis by : Hamid Laga

Download or read book 3D Shape Analysis written by Hamid Laga and published by John Wiley & Sons. This book was released on 2019-01-07 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: An in-depth description of the state-of-the-art of 3D shape analysis techniques and their applications This book discusses the different topics that come under the title of "3D shape analysis". It covers the theoretical foundations and the major solutions that have been presented in the literature. It also establishes links between solutions proposed by different communities that studied 3D shape, such as mathematics and statistics, medical imaging, computer vision, and computer graphics. The first part of 3D Shape Analysis: Fundamentals, Theory, and Applications provides a review of the background concepts such as methods for the acquisition and representation of 3D geometries, and the fundamentals of geometry and topology. It specifically covers stereo matching, structured light, and intrinsic vs. extrinsic properties of shape. Parts 2 and 3 present a range of mathematical and algorithmic tools (which are used for e.g., global descriptors, keypoint detectors, local feature descriptors, and algorithms) that are commonly used for the detection, registration, recognition, classification, and retrieval of 3D objects. Both also place strong emphasis on recent techniques motivated by the spread of commodity devices for 3D acquisition. Part 4 demonstrates the use of these techniques in a selection of 3D shape analysis applications. It covers 3D face recognition, object recognition in 3D scenes, and 3D shape retrieval. It also discusses examples of semantic applications and cross domain 3D retrieval, i.e. how to retrieve 3D models using various types of modalities, e.g. sketches and/or images. The book concludes with a summary of the main ideas and discussions of the future trends. 3D Shape Analysis: Fundamentals, Theory, and Applications is an excellent reference for graduate students, researchers, and professionals in different fields of mathematics, computer science, and engineering. It is also ideal for courses in computer vision and computer graphics, as well as for those seeking 3D industrial/commercial solutions.