Efficient Reinforcement Learning Using Gaussian Processes

Download Efficient Reinforcement Learning Using Gaussian Processes PDF Online Free

Author :
Publisher : KIT Scientific Publishing
ISBN 13 : 3866445695
Total Pages : 226 pages
Book Rating : 4.8/5 (664 download)

DOWNLOAD NOW!


Book Synopsis Efficient Reinforcement Learning Using Gaussian Processes by : Marc Peter Deisenroth

Download or read book Efficient Reinforcement Learning Using Gaussian Processes written by Marc Peter Deisenroth and published by KIT Scientific Publishing. This book was released on 2010 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias. Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems.

TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains

Download TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319011685
Total Pages : 170 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains by : Todd Hester

Download or read book TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains written by Todd Hester and published by Springer. This book was released on 2013-06-22 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuous state features; 3) it must handle sensor and/or actuator delays; and 4) it should continually select actions in real time. This book focuses on addressing all four of these challenges. In particular, this book is focused on time-constrained domains where the first challenge is critically important. In these domains, the agent’s lifetime is not long enough for it to explore the domains thoroughly, and it must learn in very few samples.

Decision Making Under Uncertainty and Reinforcement Learning

Download Decision Making Under Uncertainty and Reinforcement Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031076141
Total Pages : 251 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Decision Making Under Uncertainty and Reinforcement Learning by : Christos Dimitrakakis

Download or read book Decision Making Under Uncertainty and Reinforcement Learning written by Christos Dimitrakakis and published by Springer Nature. This book was released on 2022-12-02 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent research in decision making under uncertainty, in particular reinforcement learning and learning with expert advice. The core elements of decision theory, Markov decision processes and reinforcement learning have not been previously collected in a concise volume. Our aim with this book was to provide a solid theoretical foundation with elementary proofs of the most important theorems in the field, all collected in one place, and not typically found in introductory textbooks. This book is addressed to graduate students that are interested in statistical decision making under uncertainty and the foundations of reinforcement learning.

Reinforcement Learning, second edition

Download Reinforcement Learning, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262352702
Total Pages : 549 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning, second edition by : Richard S. Sutton

Download or read book Reinforcement Learning, second edition written by Richard S. Sutton and published by MIT Press. This book was released on 2018-11-13 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

Machine Learning and Knowledge Discovery in Databases

Download Machine Learning and Knowledge Discovery in Databases PDF Online Free

Author :
Publisher :
ISBN 13 : 9783642158841
Total Pages : 0 pages
Book Rating : 4.1/5 (588 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Knowledge Discovery in Databases by : Jos L. Balc Zar

Download or read book Machine Learning and Knowledge Discovery in Databases written by Jos L. Balc Zar and published by . This book was released on 2011-03-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Algorithms for Reinforcement Learning

Download Algorithms for Reinforcement Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015517
Total Pages : 89 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Algorithms for Reinforcement Learning by : Csaba Grossi

Download or read book Algorithms for Reinforcement Learning written by Csaba Grossi and published by Springer Nature. This book was released on 2022-05-31 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration

Mastering Deep Learning: From Basics to Advanced Techniques

Download Mastering Deep Learning: From Basics to Advanced Techniques PDF Online Free

Author :
Publisher : SK Research Group of Companies
ISBN 13 : 9364922387
Total Pages : 228 pages
Book Rating : 4.3/5 (649 download)

DOWNLOAD NOW!


Book Synopsis Mastering Deep Learning: From Basics to Advanced Techniques by : Dr.M.Kasthuri

Download or read book Mastering Deep Learning: From Basics to Advanced Techniques written by Dr.M.Kasthuri and published by SK Research Group of Companies. This book was released on 2024-07-10 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dr.M.Kasthuri, Associate Professor, Department of Computer Science, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India. Mrs.K.Kalaiselvi, Guest Lecturer, Department of Computer Science, Thanthai Periyar Government Arts and Science College, Tiruchirappalli, Tamil Nadu, India.

Deep Reinforcement Learning and Its Industrial Use Cases

Download Deep Reinforcement Learning and Its Industrial Use Cases PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1394272561
Total Pages : 421 pages
Book Rating : 4.3/5 (942 download)

DOWNLOAD NOW!


Book Synopsis Deep Reinforcement Learning and Its Industrial Use Cases by : Shubham Mahajan

Download or read book Deep Reinforcement Learning and Its Industrial Use Cases written by Shubham Mahajan and published by John Wiley & Sons. This book was released on 2024-10-01 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as a bridge connecting the theoretical foundations of DRL with practical, actionable insights for implementing these technologies in a variety of industrial contexts, making it a valuable resource for professionals and enthusiasts at the forefront of technological innovation. Deep Reinforcement Learning (DRL) represents one of the most dynamic and impactful areas of research and development in the field of artificial intelligence. Bridging the gap between decision-making theory and powerful deep learning models, DRL has evolved from academic curiosity to a cornerstone technology driving innovation across numerous industries. Its core premise—enabling machines to learn optimal actions within complex environments through trial and error—has broad implications, from automating intricate decision processes to optimizing operations that were previously beyond the reach of traditional AI techniques. “Deep Reinforcement Learning and Its Industrial Use Cases: AI for Real-World Applications” is an essential guide for anyone eager to understand the nexus between cutting-edge artificial intelligence techniques and practical industrial applications. This book not only demystifies the complex theory behind deep reinforcement learning (DRL) but also provides a clear roadmap for implementing these advanced algorithms in a variety of industries to solve real-world problems. Through a careful blend of theoretical foundations, practical insights, and diverse case studies, the book offers a comprehensive look into how DRL is revolutionizing fields such as finance, healthcare, manufacturing, and more, by optimizing decisions in dynamic and uncertain environments. This book distills years of research and practical experience into accessible and actionable knowledge. Whether you’re an AI professional seeking to expand your toolkit, a business leader aiming to leverage AI for competitive advantage, or a student or academic researching the latest in AI applications, this book provides valuable insights and guidance. Beyond just exploring the successes of DRL, it critically examines challenges, pitfalls, and ethical considerations, preparing readers to not only implement DRL solutions but to do so responsibly and effectively. Audience The book will be read by researchers, postgraduate students, and industry engineers in machine learning and artificial intelligence, as well as those in business and industry seeking to understand how DRL can be applied to solve complex industry-specific challenges and improve operational efficiency.

Reinforcement Learning

Download Reinforcement Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642276458
Total Pages : 653 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning by : Marco Wiering

Download or read book Reinforcement Learning written by Marco Wiering and published by Springer Science & Business Media. This book was released on 2012-03-05 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research. Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledge representation in reinforcement learning settings.

Uncertainty Aware Resource Provisioning Framework for Cloud Using Expected 3-SARSA Learning Agent: NSS and FNSS Based Approach

Download Uncertainty Aware Resource Provisioning Framework for Cloud Using Expected 3-SARSA Learning Agent: NSS and FNSS Based Approach PDF Online Free

Author :
Publisher : Infinite Study
ISBN 13 :
Total Pages : 24 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Uncertainty Aware Resource Provisioning Framework for Cloud Using Expected 3-SARSA Learning Agent: NSS and FNSS Based Approach by : Bhargavi K.

Download or read book Uncertainty Aware Resource Provisioning Framework for Cloud Using Expected 3-SARSA Learning Agent: NSS and FNSS Based Approach written by Bhargavi K. and published by Infinite Study. This book was released on with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: Efficiently provisioning the resources in a large computing domain like cloud is challenging due to uncertainty in resource demands and computation ability of the cloud resources. Inefficient provisioning of the resources leads to several issues in terms of the drop in Quality of Service (QoS), violation of Service Level Agreement (SLA), over-provisioning of resources, under-provisioning of resources and so on.

Neural Information Processing

Download Neural Information Processing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030041824
Total Pages : 703 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Neural Information Processing by : Long Cheng

Download or read book Neural Information Processing written by Long Cheng and published by Springer. This book was released on 2018-12-03 with total page 703 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seven-volume set of LNCS 11301-11307, constitutes the proceedings of the 25th International Conference on Neural Information Processing, ICONIP 2018, held in Siem Reap, Cambodia, in December 2018. The 401 full papers presented were carefully reviewed and selected from 575 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The third volume, LNCS 11303, is organized in topical sections on embedded learning, transfer learning, reinforcement learning, and other learning approaches.

Epistemic Uncertainty in Artificial Intelligence

Download Epistemic Uncertainty in Artificial Intelligence PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031579631
Total Pages : 133 pages
Book Rating : 4.0/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Epistemic Uncertainty in Artificial Intelligence by : Fabio Cuzzolin

Download or read book Epistemic Uncertainty in Artificial Intelligence written by Fabio Cuzzolin and published by Springer Nature. This book was released on with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Artificial Intelligence Applications and Innovations

Download Artificial Intelligence Applications and Innovations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030198235
Total Pages : 694 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence Applications and Innovations by : John MacIntyre

Download or read book Artificial Intelligence Applications and Innovations written by John MacIntyre and published by Springer. This book was released on 2019-05-15 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 15th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2019, held in Hersonissos, Crete, Greece, in May 2019. The 49 full papers and 6 short papers presented were carefully reviewed and selected from 101 submissions. They cover a broad range of topics such as deep learning ANN; genetic algorithms - optimization; constraints modeling; ANN training algorithms; social media intelligent modeling; text mining/machine translation; fuzzy modeling; biomedical and bioinformatics algorithms and systems; feature selection; emotion recognition; hybrid Intelligent models; classification - pattern recognition; intelligent security modeling; complex stochastic games; unsupervised machine learning; ANN in industry; intelligent clustering; convolutional and recurrent ANN; recommender systems; intelligent telecommunications modeling; and intelligent hybrid systems using Internet of Things. The papers are organized in the following topical sections:AI anomaly detection - active learning; autonomous vehicles - aerial vehicles; biomedical AI; classification - clustering; constraint programming - brain inspired modeling; deep learning - convolutional ANN; fuzzy modeling; learning automata - logic based reasoning; machine learning - natural language; multi agent - IoT; nature inspired flight and robot; control - machine vision; and recommendation systems.

32nd European Symposium on Computer Aided Process Engineering

Download 32nd European Symposium on Computer Aided Process Engineering PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 032395880X
Total Pages : 1760 pages
Book Rating : 4.3/5 (239 download)

DOWNLOAD NOW!


Book Synopsis 32nd European Symposium on Computer Aided Process Engineering by : Ludovic Montastruc

Download or read book 32nd European Symposium on Computer Aided Process Engineering written by Ludovic Montastruc and published by Elsevier. This book was released on 2022-06-30 with total page 1760 pages. Available in PDF, EPUB and Kindle. Book excerpt: 32nd European Symposium on Computer Aided Process Engineering: ESCAPE-32 contains the papers presented at the 32nd European Symposium of Computer Aided Process Engineering (ESCAPE) event held in Toulouse, France. It is a valuable resource for chemical engineers, chemical process engineers, researchers in industry and academia, students and consultants for chemical industries who work in process development and design. - Presents findings and discussions from the 32nd European Symposium of Computer Aided Process Engineering (ESCAPE) event

Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis

Download Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030603652
Total Pages : 233 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis by : Carole H. Sudre

Download or read book Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis written by Carole H. Sudre and published by Springer Nature. This book was released on 2020-10-05 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2020, and the Third International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshops were held virtually due to the COVID-19 pandemic. For UNSURE 2020, 10 papers from 18 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world. GRAIL 2020 accepted 10 papers from the 12 submissions received. The workshop aims to bring together scientists that use and develop graph-based models for the analysis of biomedical images and to encourage the exploration of graph-based models for difficult clinical problems within a variety of biomedical imaging contexts.

ECAI 2023

Download ECAI 2023 PDF Online Free

Author :
Publisher : IOS Press
ISBN 13 : 164368437X
Total Pages : 3328 pages
Book Rating : 4.6/5 (436 download)

DOWNLOAD NOW!


Book Synopsis ECAI 2023 by : K. Gal

Download or read book ECAI 2023 written by K. Gal and published by IOS Press. This book was released on 2023-10-18 with total page 3328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrate innovative applications and uses of advanced AI technology. ECAI 2023 received 1896 submissions – a record number – of which 1691 were retained for review, ultimately resulting in an acceptance rate of 23%. The 390 papers included here, cover topics including machine learning, natural language processing, multi agent systems, and vision and knowledge representation and reasoning. PAIS 2023 received 17 submissions, of which 10 were accepted after a rigorous review process. Those 10 papers cover topics ranging from fostering better working environments, behavior modeling and citizen science to large language models and neuro-symbolic applications, and are also included here. Presenting a comprehensive overview of current research and developments in AI, the book will be of interest to all those working in the field.

Deep Reinforcement Learning

Download Deep Reinforcement Learning PDF Online Free

Author :
Publisher : HiTeX Press
ISBN 13 :
Total Pages : 209 pages
Book Rating : 4.:/5 (661 download)

DOWNLOAD NOW!


Book Synopsis Deep Reinforcement Learning by : Robert Johnson

Download or read book Deep Reinforcement Learning written by Robert Johnson and published by HiTeX Press. This book was released on 2024-10-27 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Deep Reinforcement Learning: An Essential Guide" offers a comprehensive introduction to one of the most dynamic and transformative areas of artificial intelligence. This book meticulously unravels the intricate concepts of deep reinforcement learning (DRL), bridging foundational theories with cutting-edge applications. Addressing both newcomers and experienced practitioners, it provides a structured exploration from the basics of neural networks and reinforcement learning to the sophisticated mechanisms that drive core algorithms like DQN, PPO, and policy gradient methods. The book emphasizes real-world applications, showcasing DRL's impact across gaming, finance, healthcare, and autonomous systems, illustrating its vast potential and versatility. By understanding the strategic balance of exploration and exploitation, readers gain insight into designing intelligent agents capable of thriving in complex environments. As DRL continues to evolve, the text also delves into current challenges and future directions, such as ethical considerations, safety, and efficiency, preparing readers to contribute to and innovate within this rapidly advancing field. Comprehensive yet accessible, this guide is an invaluable resource for anyone aspiring to harness the power of deep reinforcement learning.