Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Efficient Algorithms For Learning Mixture Models
Download Efficient Algorithms For Learning Mixture Models full books in PDF, epub, and Kindle. Read online Efficient Algorithms For Learning Mixture Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Spectral Algorithms by : Ravindran Kannan
Download or read book Spectral Algorithms written by Ravindran Kannan and published by Now Publishers Inc. This book was released on 2009 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral methods refer to the use of eigenvalues, eigenvectors, singular values and singular vectors. They are widely used in Engineering, Applied Mathematics and Statistics. More recently, spectral methods have found numerous applications in Computer Science to "discrete" as well as "continuous" problems. Spectral Algorithms describes modern applications of spectral methods, and novel algorithms for estimating spectral parameters. The first part of the book presents applications of spectral methods to problems from a variety of topics including combinatorial optimization, learning and clustering. The second part of the book is motivated by efficiency considerations. A feature of many modern applications is the massive amount of input data. While sophisticated algorithms for matrix computations have been developed over a century, a more recent development is algorithms based on "sampling on the fly" from massive matrices. Good estimates of singular values and low rank approximations of the whole matrix can be provably derived from a sample. The main emphasis in the second part of the book is to present these sampling methods with rigorous error bounds. It also presents recent extensions of spectral methods from matrices to tensors and their applications to some combinatorial optimization problems.
Book Synopsis Mixture Models and Applications by : Nizar Bouguila
Download or read book Mixture Models and Applications written by Nizar Bouguila and published by Springer. This book was released on 2019-08-13 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on recent advances, approaches, theories and applications related to mixture models. In particular, it presents recent unsupervised and semi-supervised frameworks that consider mixture models as their main tool. The chapters considers mixture models involving several interesting and challenging problems such as parameters estimation, model selection, feature selection, etc. The goal of this book is to summarize the recent advances and modern approaches related to these problems. Each contributor presents novel research, a practical study, or novel applications based on mixture models, or a survey of the literature. Reports advances on classic problems in mixture modeling such as parameter estimation, model selection, and feature selection; Present theoretical and practical developments in mixture-based modeling and their importance in different applications; Discusses perspectives and challenging future works related to mixture modeling.
Book Synopsis Beyond the Worst-Case Analysis of Algorithms by : Tim Roughgarden
Download or read book Beyond the Worst-Case Analysis of Algorithms written by Tim Roughgarden and published by Cambridge University Press. This book was released on 2021-01-14 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces exciting new methods for assessing algorithms for problems ranging from clustering to linear programming to neural networks.
Book Synopsis Algorithmic Aspects of Machine Learning by : Ankur Moitra
Download or read book Algorithmic Aspects of Machine Learning written by Ankur Moitra and published by Cambridge University Press. This book was released on 2018-09-27 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces cutting-edge research on machine learning theory and practice, providing an accessible, modern algorithmic toolkit.
Book Synopsis Finite Mixture Models by : Geoffrey McLachlan
Download or read book Finite Mixture Models written by Geoffrey McLachlan and published by John Wiley & Sons. This book was released on 2004-03-22 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
Book Synopsis Mixture Models by : Bruce G. Lindsay
Download or read book Mixture Models written by Bruce G. Lindsay and published by IMS. This book was released on 1995 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Learning Theory written by Nader Bshouty and published by Springer. This book was released on 2007-06-12 with total page 645 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 20th Annual Conference on Learning Theory, COLT 2007, held in San Diego, CA, USA in June 2007. It covers unsupervised, semisupervised and active learning, statistical learning theory, inductive inference, regularized learning, kernel methods, SVM, online and reinforcement learning, learning algorithms and limitations on learning, dimensionality reduction, as well as open problems.
Book Synopsis Handbook of Big Data by : Peter Bühlmann
Download or read book Handbook of Big Data written by Peter Bühlmann and published by CRC Press. This book was released on 2016-02-22 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Big Data provides a state-of-the-art overview of the analysis of large-scale datasets. Featuring contributions from well-known experts in statistics and computer science, this handbook presents a carefully curated collection of techniques from both industry and academia. Thus, the text instills a working understanding of key statistical
Book Synopsis Algorithmic Learning Theory by : Nicolò Cesa-Bianchi
Download or read book Algorithmic Learning Theory written by Nicolò Cesa-Bianchi and published by Springer. This book was released on 2003-08-03 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the papers presented at the 13th Annual Conference on Algorithmic Learning Theory (ALT 2002), which was held in Lub ̈ eck (Germany) during November 24–26, 2002. The main objective of the conference was to p- vide an interdisciplinary forum discussing the theoretical foundations of machine learning as well as their relevance to practical applications. The conference was colocated with the Fifth International Conference on Discovery Science (DS 2002). The volume includes 26 technical contributions which were selected by the program committee from 49 submissions. It also contains the ALT 2002 invited talks presented by Susumu Hayashi (Kobe University, Japan) on “Mathematics Based on Learning”, by John Shawe-Taylor (Royal Holloway University of L- don, UK) on “On the Eigenspectrum of the Gram Matrix and Its Relationship to the Operator Eigenspectrum”, and by Ian H. Witten (University of Waikato, New Zealand) on “Learning Structure from Sequences, with Applications in a Digital Library” (joint invited talk with DS 2002). Furthermore, this volume - cludes abstracts of the invited talks for DS 2002 presented by Gerhard Widmer (Austrian Research Institute for Arti?cial Intelligence, Vienna) on “In Search of the Horowitz Factor: Interim Report on a Musical Discovery Project” and by Rudolf Kruse (University of Magdeburg, Germany) on “Data Mining with Graphical Models”. The complete versions of these papers are published in the DS 2002 proceedings (Lecture Notes in Arti?cial Intelligence, Vol. 2534). ALT has been awarding the E.
Book Synopsis Algorithmic High-Dimensional Robust Statistics by : Ilias Diakonikolas
Download or read book Algorithmic High-Dimensional Robust Statistics written by Ilias Diakonikolas and published by Cambridge University Press. This book was released on 2023-08-31 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust statistics is the study of designing estimators that perform well even when the dataset significantly deviates from the idealized modeling assumptions, such as in the presence of model misspecification or adversarial outliers in the dataset. The classical statistical theory, dating back to pioneering works by Tukey and Huber, characterizes the information-theoretic limits of robust estimation for most common problems. A recent line of work in computer science gave the first computationally efficient robust estimators in high dimensions for a range of learning tasks. This reference text for graduate students, researchers, and professionals in machine learning theory, provides an overview of recent developments in algorithmic high-dimensional robust statistics, presenting the underlying ideas in a clear and unified manner, while leveraging new perspectives on the developed techniques to provide streamlined proofs of these results. The most basic and illustrative results are analyzed in each chapter, while more tangential developments are explored in the exercises.
Book Synopsis RoboCup 2011: Robot Soccer World Cup XV by : Thomas Roefer
Download or read book RoboCup 2011: Robot Soccer World Cup XV written by Thomas Roefer and published by Springer. This book was released on 2012-07-23 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes the thoroughly refereed post-conference proceedings of the 15th Annual RoboCup International Symposium, held in Istanbul, Turkey, in July 2011. The 12 revised papers and 32 poster presentation presented were carefully reviewed and selected from 97 submissions. The papers are orginazed on topical sections on robot hardware and software, perception and action, robotic cognition and learning, multi-robot systems, human-robot interaction, education and edutainment and applications.
Book Synopsis Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015 by : Robert Burduk
Download or read book Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015 written by Robert Burduk and published by Springer. This book was released on 2016-03-05 with total page 827 pages. Available in PDF, EPUB and Kindle. Book excerpt: The computer recognition systems are nowadays one of the most promising directions in artificial intelligence. This book is the most comprehensive study of this field. It contains a collection of 79 carefully selected articles contributed by experts of pattern recognition. It reports on current research with respect to both methodology and applications. In particular, it includes the following sections: Features, learning, and classifiers Biometrics Data Stream Classification and Big Data Analytics Image processing and computer vision Medical applications Applications RGB-D perception: recent developments and applications This book is a great reference tool for scientists who deal with the problems of designing computer pattern recognition systems. Its target readers can be the as well researchers as students of computer science, artificial intelligence or robotics.
Book Synopsis Advances in Neural Information Processing Systems 15 by : Suzanna Becker
Download or read book Advances in Neural Information Processing Systems 15 written by Suzanna Becker and published by MIT Press. This book was released on 2003 with total page 1738 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the 2002 Neural Information Processing Systems Conference.
Book Synopsis Machine Learning: ECML 2006 by : Johannes Fürnkranz
Download or read book Machine Learning: ECML 2006 written by Johannes Fürnkranz and published by Springer. This book was released on 2006-09-21 with total page 873 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 17th European Conference on Machine Learning, ECML 2006, held, jointly with PKDD 2006. The book presents 46 revised full papers and 36 revised short papers together with abstracts of 5 invited talks, carefully reviewed and selected from 564 papers submitted. The papers present a wealth of new results in the area and address all current issues in machine learning.
Book Synopsis Advanced Data Mining and Applications by : Gao Cong
Download or read book Advanced Data Mining and Applications written by Gao Cong and published by Springer. This book was released on 2017-10-30 with total page 879 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 13th International Conference on Advanced Data Mining and Applications, ADMA 2017, held in Singapore in November 2017. The 20 full and 38 short papers presented in this volume were carefully reviewed and selected from 118 submissions. The papers were organized in topical sections named: database and distributed machine learning; recommender system; social network and social media; machine learning; classification and clustering methods; behavior modeling and user profiling; bioinformatics and medical data analysis; spatio-temporal data; natural language processing and text mining; data mining applications; applications; and demos.
Book Synopsis Computing Handbook by : Teofilo Gonzalez
Download or read book Computing Handbook written by Teofilo Gonzalez and published by CRC Press. This book was released on 2014-05-07 with total page 2326 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first volume of this popular handbook mirrors the modern taxonomy of computer science and software engineering as described by the Association for Computing Machinery (ACM) and the IEEE Computer Society (IEEE-CS). Written by established leading experts and influential young researchers, it examines the elements involved in designing and implementing software, new areas in which computers are being used, and ways to solve computing problems. The book also explores our current understanding of software engineering and its effect on the practice of software development and the education of software professionals.
Book Synopsis Constrained Clustering by : Sugato Basu
Download or read book Constrained Clustering written by Sugato Basu and published by CRC Press. This book was released on 2008-08-18 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the initial work on constrained clustering, there have been numerous advances in methods, applications, and our understanding of the theoretical properties of constraints and constrained clustering algorithms. Bringing these developments together, Constrained Clustering: Advances in Algorithms, Theory, and Applications presents an extensive collection of the latest innovations in clustering data analysis methods that use background knowledge encoded as constraints. Algorithms The first five chapters of this volume investigate advances in the use of instance-level, pairwise constraints for partitional and hierarchical clustering. The book then explores other types of constraints for clustering, including cluster size balancing, minimum cluster size,and cluster-level relational constraints. Theory It also describes variations of the traditional clustering under constraints problem as well as approximation algorithms with helpful performance guarantees. Applications The book ends by applying clustering with constraints to relational data, privacy-preserving data publishing, and video surveillance data. It discusses an interactive visual clustering approach, a distance metric learning approach, existential constraints, and automatically generated constraints. With contributions from industrial researchers and leading academic experts who pioneered the field, this volume delivers thorough coverage of the capabilities and limitations of constrained clustering methods as well as introduces new types of constraints and clustering algorithms.