Dynamics, Stability and Scaling of Turbulent Methane Oxy-combustion

Download Dynamics, Stability and Scaling of Turbulent Methane Oxy-combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 216 pages
Book Rating : 4.:/5 (13 download)

DOWNLOAD NOW!


Book Synopsis Dynamics, Stability and Scaling of Turbulent Methane Oxy-combustion by : Nadim Walid Chakroun

Download or read book Dynamics, Stability and Scaling of Turbulent Methane Oxy-combustion written by Nadim Walid Chakroun and published by . This book was released on 2018 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon capture and storage (CCS) is an important strategy for reducing CO2 emissions, with oxy-fuel combustion being one of the most promising technologies because of it is high efficiency and low cost. In oxy-combustion, CH4/O2/CO2 mixtures burn at low temperatures (~~1700 K), high pressures (~~40 bar), where laminar burning velocities are about 7 times lower than in traditional CH4 /Air mixtures. Thus oxy-fuel combustors are more prone to blowoff and dynamic instabilities. In this thesis we examine turbulent oxy-combustion flame stabilization physics at the large and small scales using experimental studies and numerical simulations. Experimental measurements are used to establish the stability characteristics of flame macrostructures in a swirl stabilized combustor. We show that the transition in the flame macrostructure to a flame stabilized along both the inner and outer shear layers (Flame IV), scales according to the extinction strain rate, similar to air flames. To achieve accurate scaling, extinction strain rates must be computed at the thermal conditions of the outer shear layer, emphasizing the role of heat interactions with the wall boundary layer. Care must be exercised while modeling the chemical structure of oxy-flames. We show that the kinetics of CO2 (used as a diluent in oxy-combustion) is important in determining the consumption speed and flame extinction strain rate. Specifically, the extinction strain rate was found to be heavily impacted by the reaction CO2+ H -->/

Impact of Fuel and Oxidizer Composition on Premixed Flame Stabilization in Turbulent Swirling Flows

Download Impact of Fuel and Oxidizer Composition on Premixed Flame Stabilization in Turbulent Swirling Flows PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 214 pages
Book Rating : 4.:/5 (952 download)

DOWNLOAD NOW!


Book Synopsis Impact of Fuel and Oxidizer Composition on Premixed Flame Stabilization in Turbulent Swirling Flows by : Soufien Taamallah

Download or read book Impact of Fuel and Oxidizer Composition on Premixed Flame Stabilization in Turbulent Swirling Flows written by Soufien Taamallah and published by . This book was released on 2016 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world relies on fossil fuels as its main energy source (86.7% in 1973, 81.7% in 2012). Several factors including the abundance of resources and the existing infrastructure suggest that this is likely to continue in the near future (potentially 75% in 2040). Meanwhile climate change continues to be a pressing concern that calls for the development of low CO2 energy systems. Among the most promising approaches are pre-combustion capture technologies, e.g., coal gasification and natural gas reforming that produce hydrogen-rich fuels. Another approach is oxy-combustion in which air is replaced by a mixture of O2/CO2/H2O as the oxidizer stream. However, modern gas turbines have been optimized to operate on methane-air combustion and several challenges, notably thermo-acoustic instability, arise when using other fuels or oxidizers because of their different thermochemical and transport properties. While these phenomena constitute a major challenge under conventional operations, using hydrogen-rich fuels or CO2-rich oxidizer exacerbates the problem by modifying the combustor stability map in ways that are not well understood. In this thesis, we identify combustion modes most prone to dynamics, predict the onset of thermo-acoustic instability over a wide range of fuel and oxidizer compositions, and define parameters that can scale the data. To this end, a combination of experimental and numerical tools were deployed. We carried out a series of experiments in an optically accessible laboratory-scale swirl-stabilized combustor typical of those found in modern gas turbines, using high-speed chemiluminescence to examine the flame macrostructure; high-speed Particle Image Velocimetry and OH Planar Laser Induced Fluorescence to probe the flow and flame microstructure. Numerical simulations were used to complement experiments and examine the complex three-dimensional two-way interaction between the flame and the turbulent swirling flow. Experimental data were used to construct the stability maps for different CH4-H2 mixtures and analyze the dynamic flame macrostructures and their transitions. A comparison with acoustically uncoupled combustion shows that the onset of thermo-acoustic instability is concomitant with a specific transition associated with the intermittent appearance of the flame in the outer recirculation zone (ORZ) and stabilization along the outer shear layer (forming between the swirling jet and the ORZ, as revealed by the PIV-PLIF data). The sudden onset of large amplitude limit cycle oscillations and the observed hysteresis suggest the existence of a sub-critical Hopf bifurcation typically characterized by a bistable or "triggering" zone; the flame intermittency in the ORZ can potentially provide the disturbance required to trigger these oscillations. Using a dual-camera method to track chemiluminescence in space and time, this flame transition was found to originate from a reacting kernel that detaches from the inner shear layer flame (forming between the jet and the vortex breakdown zone), reaching the ORZ and spinning at a specific frequency; its characteristic Strouhal number is independent of the Reynolds number and the fuel/oxidizer, only a function of the swirl strength. We propose a new Karlovitz number based criterion that defines the transition on a flow time - flame time space, the former being the inverse of the spinning frequency and the latter being the flame extinction strain rate. According to this scaling, the flame survives in the ORZ if and when it can overcome the region's bulk strain rate. This criterion is valid over a wide range of operating, fuel and oxidizer composition, covering a wide range of fast to slow chemistry scenarios. Given the role of this flame transition in triggering the instability, the same criterion is applicable to predicting the onset of thermo-acoustics. The interaction of the turbulent swirling flow with the flame is further examined using large eddy simulations. Numerical simulations show that the experimentally observed large scale flame structures along the inner shear layer are due to a helical vortex core that originates at the swirler's centerbody. This vortical structure stays aligned with the centerline in the combustor upstream section, but bends and reaches the inner shear layer-stabilized flame around the sudden expansion where it causes the flame wrinkling. We propose that the flame kernel igniting the ORZ/ OSL observed in the experiment may be related to the interaction between the helical vortical structure and the outer shear layer.

Dynamic Stability, Blowoff, and Flame Characteristics of Oxy-fuel Combustion

Download Dynamic Stability, Blowoff, and Flame Characteristics of Oxy-fuel Combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 86 pages
Book Rating : 4.:/5 (767 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Stability, Blowoff, and Flame Characteristics of Oxy-fuel Combustion by : Andrew Philip Shroll

Download or read book Dynamic Stability, Blowoff, and Flame Characteristics of Oxy-fuel Combustion written by Andrew Philip Shroll and published by . This book was released on 2011 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oxy-fuel combustion is a promising technology to implement carbon capture and sequestration for energy conversion to electricity in power plants that burn fossil fuels. In oxy-fuel combustion, air separation is used to burn fuel in oxygen to easily obtain a pure stream of carbon dioxide from the products of combustion. A diluent, typically carbon dioxide, is recycled from the exhaust to mitigate temperature. This substitution of carbon dioxide with the nitrogen in air alters the thermodynamics, transport properties, and relative importance of chemical pathways of the reacting mixture, impacting the flame temperature and stability of the combustion process. In this thesis, methane oxy-combustion flames are studied for relevance to natural gas. First, a numerical 1-D strained flame shows significantly reduced consumption speeds for oxy-combustion compared to air combustion at the same adiabatic flame temperature. Competition for the H radical from the presence of carbon dioxide causes high CO emissions. Elevated strain rates also cause incomplete combustion in oxy-combustion, demonstrated by the effect of Lewis number with a value greater than one for flame temperatures under 1900 K. Most of this work focuses on experimental results from premixed flames in a 50 kW axi-symmetric swirl-stabilized combustor. Combustion instabilities, upon which much effort is expended to avoid in gas turbines with low pollutant emissions, are described as a baseline for the given combustor geometry using overall sound pressure level maps and chemiluminescence images of 1/4, 3/4, and 5/4 wave mode limit cycles. These oxy-combustion results are compared to conventional air combustion, and the collapse of mode transitions with temperature for a given Reynolds number is found. Hysteresis effects in mode transition are important and similar for air and oxy-combustion. Blowoff trends are also analyzed. While oxy-combustion flames blow off at a higher temperature for a given Reynolds number due to weaker flames, there is an unexpected negative slope in blowoff velocity vs temperature for both air and oxy-combustion. The blowoff data are shown to collapse due to blowoff velocity being inversely proportional to the molar heat capacities of the burned gas mixtures at a given power. Finally, particle image velocimetry results are discussed to relate flow structures to corresponding flame structures.

Approaches for Clean Combustion in Gas Turbines

Download Approaches for Clean Combustion in Gas Turbines PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303044077X
Total Pages : 426 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Approaches for Clean Combustion in Gas Turbines by : Medhat A. Nemitallah

Download or read book Approaches for Clean Combustion in Gas Turbines written by Medhat A. Nemitallah and published by Springer Nature. This book was released on 2020-03-24 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the development of novel combustion approaches and burner designs for clean power generation in gas turbines. It shows the reader how to control the release of pollutants to the environment in an effort to reduce global warming. After an introduction to global warming issues and clean power production for gas turbine applications, subsequent chapters address premixed combustion, burner designs for clean power generation, gas turbine performance, and insights on gas turbine operability. Given its scope, the book can be used as a textbook for graduate-level courses on clean combustion, or as a reference book to accompany compact courses for mechanical engineers and young researchers around the world.

Turbulent Combustion Modeling

Download Turbulent Combustion Modeling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400704127
Total Pages : 496 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Turbulent Combustion Modeling by : Tarek Echekki

Download or read book Turbulent Combustion Modeling written by Tarek Echekki and published by Springer Science & Business Media. This book was released on 2010-12-25 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Oxyfuel Combustion for Clean Energy Applications

Download Oxyfuel Combustion for Clean Energy Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030105881
Total Pages : 378 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Oxyfuel Combustion for Clean Energy Applications by : Medhat A. Nemitallah

Download or read book Oxyfuel Combustion for Clean Energy Applications written by Medhat A. Nemitallah and published by Springer. This book was released on 2019-02-11 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to be the reference book in the area of oxyfuel combustion, covering the fundamentals, design considerations and current challenges in the field. Its first part provides an overview of the greenhouse gas emission problem and the current carbon capture and sequestration technologies. The second part introduces oxy-fuel combustion technologies with emphasis on system efficiency, combustion and emission characteristics, applications and related challenges. The third part focuses on the recent developments in ion transport membranes and their performance in both oxygen separation units and oxygen transport reactors (OTRs). The fourth part presents novel approaches for clean combustion in gas turbines and boilers. Computational modelling and optimization of combustion in gas turbine combustors and boiler furnaces are presented in the fifth part with some numerical results and detailed analyses.

Modeling and Simulation of Turbulent Combustion

Download Modeling and Simulation of Turbulent Combustion PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811074100
Total Pages : 663 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Modeling and Simulation of Turbulent Combustion by : Santanu De

Download or read book Modeling and Simulation of Turbulent Combustion written by Santanu De and published by Springer. This book was released on 2017-12-12 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Large Eddy Simulations of Premixed Turbulent Flame Dynamics

Download Large Eddy Simulations of Premixed Turbulent Flame Dynamics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 300 pages
Book Rating : 4.:/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Large Eddy Simulations of Premixed Turbulent Flame Dynamics by : Gaurav Kewlani

Download or read book Large Eddy Simulations of Premixed Turbulent Flame Dynamics written by Gaurav Kewlani and published by . This book was released on 2014 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: High efficiency, low emissions and stable operation over a wide range of conditions are some of the key requirements of modem-day combustors. To achieve these objectives, lean premixed flames are generally preferred as they achieve efficient and clean combustion. A drawback of lean premixed combustion, however, is that the flames are more prone to dynamics. The unsteady release of sensible heat and flow dilatation in combustion processes create pressure fluctuations which, particularly in premixed flames, can couple with the acoustics of the combustion system. This acoustic coupling creates a feedback loop with the heat release that can lead to severe thermoacoustic instabilities that can damage the combustor. Understanding these dynamics, predicting their onset and proposing passive and active control strategies are critical to large-scale implementation. For the numerical study of such systems, large eddy simulation (LES) techniques with appropriate combustion models and reaction mechanisms are highly appropriate. These approaches balance the computational complexity and predictive accuracy. This work, therefore, aims to explore the applicability of these methods to the study of premixed wake stabilized flames. Specifically, finite rate chemistry LES models that can effectively capture the interaction between different turbulent scales and the combustion fronts have been implemented, and applied for the analysis of premixed turbulent flame dynamics in laboratory-scale combustor configurations. Firstly, the artificial flame thickening approach, along with an appropriate reduced chemistry mechanism, is utilized for modeling turbulence-combustion interactions at small scales. A novel dynamic formulation is proposed that explicitly incorporates the influence of strain on flame wrinkling by solving a transport equation for the latter rather than using local-equilibrium-based algebraic models. Additionally, a multiple-step combustion chemistry mechanism is used for the simulations. Secondly, the presumed-PDF approach, coupled with the flamelet generated manifold (FGM) technique, is also implemented for modeling turbulence-combustion interactions. The proposed formulation explicitly incorporates the influence of strain via the scalar dissipation rate and can result in more accurate predictions especially for highly unsteady flame configurations. Specifically, the dissipation rate is incorporated as an additional coordinate to presume the PDF and strained flamelets are utilized to generate the chemistry databases. These LES solvers have been developed and applied for the analysis of reacting flows in several combustor configurations, i.e. triangular bluff body in a rectangular channel, backward facing step configuration, axi-symmetric bluff body in cylindrical chamber, and cylindrical sudden expansion with swirl, and their performance has been be validated against experimental observations. Subsequently, the impact of the equivalence ratio variation on flame-flow dynamics is studied for the swirl configuration using the experimental PIV data as well as the numerical LES code, following which dynamic mode decomposition of the flow field is performed. It is observed that increasing the equivalence ratio can appreciably influence the dominant flow features in the wake region, including the size and shape of the recirculation zone(s), as well as the flame dynamics. Specifically, varying the heat loading results in altering the dominant flame stabilization mechanism, thereby causing transitions across distinct- flame configurations, while also modifying the inner recirculation zone topology significantly. Additionally, the LES framework has also been applied to gain an insight into the combustion dynamics phenomena for the backward-facing step configuration. Apart from evaluating the influence of equivalence ratio on the combustion process for stable flames, the flame-flow interactions in acoustically forced scenarios are also analyzed using LES and dynamic mode decomposition (DMD). Specifically, numerical simulations are performed corresponding to a selfexcited combustion instability configuration as observed in the experiments, and it is observed that LES is able to suitably capture the flame dynamics. These insights highlight the effect of heat release variation on flame-flow interactions in wall-confined combustor configurations, which can significantly impact combustion stability in acoustically-coupled systems. The fidelity of the solvers in predicting the system response to variation in heat loading and to acoustic forcing suggests that the LES framework can be suitably applied for the analysis of flame dynamics as well as to understand the fundamental mechanisms responsible for combustion instability. KEY WORDS - large eddy simulation, LES, wake stabilized flame, turbulent premixed combustion, combustion modeling, artificially thickened flame model, triangular bluff body, backward facing step combustor, presumed-PDF model, flamelet generated manifold, axi-symmetric bluff body, cylindrical swirl combustor, particle image velocimetry, dynamic mode decomposition, combustion instability, forced response.

Thermoacoustic Combustion Instability Control

Download Thermoacoustic Combustion Instability Control PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0323899188
Total Pages : 1145 pages
Book Rating : 4.3/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Thermoacoustic Combustion Instability Control by : Dan Zhao

Download or read book Thermoacoustic Combustion Instability Control written by Dan Zhao and published by Academic Press. This book was released on 2023-02-13 with total page 1145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermoacoustic Combustion Instability Control: Engineering Applications and Computer Codes provides a unique opportunity for researchers, students and engineers to access recent developments from technical, theoretical and engineering perspectives. The book is a compendium of the most recent advances in theoretical and computational modeling and the thermoacoustic instability phenomena associated with multi-dimensional computing methods and recent developments in signal-processing techniques. These include, but are not restricted to a real-time observer, proper orthogonal decomposition (POD), dynamic mode decomposition, Galerkin expansion, empirical mode decomposition, the Lattice Boltzmann method, and associated numerical and analytical approaches. The fundamental physics of thermoacoustic instability occurs in both macro- and micro-scale combustors. Practical methods for alleviating common problems are presented in the book with an analytical approach to arm readers with the tools they need to apply in their own industrial or research setting. Readers will benefit from practicing the worked examples and the training provided on computer coding for combustion technology to achieve useful results and simulations that advance their knowledge and research. Focuses on applications of theoretical and numerical modes with computer codes relevant to combustion technology Includes the most recent modeling and analytical developments motivated by empirical experimental observations in a highly visual way Provides self-contained chapters that include a comprehensive, introductory section that ensures any readers new to this topic are equipped with required technical terms

Turbulent Combustion

Download Turbulent Combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 536 pages
Book Rating : 4.0/5 ( download)

DOWNLOAD NOW!


Book Synopsis Turbulent Combustion by : L. Vervisch

Download or read book Turbulent Combustion written by L. Vervisch and published by . This book was released on 2005 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Turbulent Flame Microstructure, Dynamics, and Thermoacoustic Instability in Swirl-stabilized Premixed Combustion

Download Turbulent Flame Microstructure, Dynamics, and Thermoacoustic Instability in Swirl-stabilized Premixed Combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 220 pages
Book Rating : 4.:/5 (913 download)

DOWNLOAD NOW!


Book Synopsis Turbulent Flame Microstructure, Dynamics, and Thermoacoustic Instability in Swirl-stabilized Premixed Combustion by : Zachary Alexander LaBry

Download or read book Turbulent Flame Microstructure, Dynamics, and Thermoacoustic Instability in Swirl-stabilized Premixed Combustion written by Zachary Alexander LaBry and published by . This book was released on 2015 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most difficult challenges facing the development of modern gas turbines-for power generation, and propulsion-is the mitigation of dynamic instabilities in the presence of efficiency and emissions constraints. Dynamic instabilities-self-excited, self-sustaining oscillations which link the combustor acoustics to the combustion process-can result in significant levels of thermal and mechanical stress on combustion systems, leading to reduced operational lifetime, potentially dangerous failure modes, and significant deviations from the desired operating conditions. Due to the complexity of the problem, with the relevant time and length scales of the system--from the chemistry to the acoustics-spanning several orders of magnitude, even sophisticated numerical techniques have been severely limited in their ability to make reliable predictions, leaving the task of finding and eliminating modes of instability to a lengthy and expensive trial-and-error process. Lean-premixed combustion, one of the leading technologies for low emission combustors, is particularly susceptible to these types of instabilities. The sealed systems that are necessary to maintain a reaction in a lean mixture do not attenuate acoustics well, which often results in high-amplitude pressure fluctuations. In this thesis, we focus on developing a better predictive framework for the onset of combustion instabilities in a swirl-stabilized, lean-premixed combustor. We correlate the self-excited acoustic behavior with quantifiable system properties that can be generalized across different fuel blends. This work is predicated on the idea that self-excited combustion instability arises from the selective amplification of the noise inherent in a turbulent combustion system, and that the frequency-based response of the flame is a function of the flame geometry. In the first part of the thesis, we focus on the flame geometry, identifying several discrete transitions that take place in the swirl-stabilized flame as we adjust the equivalence ratio. By comparing the transitions across several CH4/H2 fuel blends, and using statistical techniques to interrogate the global effect of the small-scale flow-flame interactions, we find that the extinction strain rate-the flow-driven rate of change in flame surface area at which the chemistry is no longer -sufficiently fast to maintain the reaction-is directly linked to the flame transitions. The swirl-stabilized flow features several critical regions with large and unsteady velocity derivatives, particularly, a pair of shear layers that divide the incoming flow of reactants from an inner and an outer recirculation zone. As the extinction strain rate increases with increasing equivalence ratio, the flame transitions through these critical regions, manifesting as discrete changes in the flame geometry. In the second part, we address the correlation between self-excited instability and the forced acoustic response. By modifying the pressure boundary conditions, we decouple the flame from the acoustics over a domain of interest (defined by a range of equivalence ratios that correspond to the onset of dynamic instability in the coupled system). We then apply external acoustic forcing at a single frequency to ascertain the response of the flame to each particular forcing frequency by means of a flame transfer function. This enables us to consider the frequency-by-frequency response of the flame to its own internally generated noise. We show that the onset of instability is well-predicted by the overlap of the natural acoustic frequencies of the combustor (predicted using a non-linear flame response model) with those frequencies for which the phase of the flame transfer function satisfies the well-known Rayleigh criterion, which is a necessary condition for the presence of self-excited combustion instability. By examining both the forced response and the self-excited instability across several different fuel blends, we go on to show that both behaviors correlate well with the flame geometry, which we have already shown to be dictated by the extinction strain rate of the particular fuel blend. We go on to collapse both sets of data on the strained flame consumption speed taken at the limit of the extinction strain rate, and in doing so, present a framework for predicting the operating conditions under which the combustor in the coupled configuration will go unstable based on measurements and correlations from the uncoupled configuration. Furthermore by taking the consumption speed at the extinction limit, we are correlating the geometry and dynamics with a parameter that is solely a function of mixture properties. This provides the basis for a framework for predicting instability from properties that are more readily measured or simulated, and provides and explicit means of converting these results to different fuel mixtures.

Towards Predicting Dynamics in Turbulent Premixed Combustion Using PIV-PLIF Measurements of Flow-flame Microstructure

Download Towards Predicting Dynamics in Turbulent Premixed Combustion Using PIV-PLIF Measurements of Flow-flame Microstructure PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 216 pages
Book Rating : 4.:/5 (897 download)

DOWNLOAD NOW!


Book Synopsis Towards Predicting Dynamics in Turbulent Premixed Combustion Using PIV-PLIF Measurements of Flow-flame Microstructure by : Seung Hyuck Hong

Download or read book Towards Predicting Dynamics in Turbulent Premixed Combustion Using PIV-PLIF Measurements of Flow-flame Microstructure written by Seung Hyuck Hong and published by . This book was released on 2014 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combustion dynamics are critical to the development of high-efficiency, low-emission and fuel-flexible combustion systems used for propulsion and power generation. Predicting the onset of dynamics remains a challenge because of the complex interactions among several multi-scale phenomena, including turbulence, kinetics and acoustics, and their strong dependence on the operating conditions and fuel properties. In this thesis, a series of experiments were conducted in a laboratory-scale combustor, burning lean premixed propane/hydrogen/air mixtures over a range of equivalence ratio, fuel composition and inlet temperature. Dynamic pressure and flame chemiluminescence measurements are used to determine macro-scale characteristics such as the frequency, limit cycle amplitude and dynamic flame shape. High-speed, high-resolution particle image velocimetry (PIV) is used to quantify the micro-scale structure of the flow, while planar laser-induced fluorescence (PLIF) of OH radical is used to investigate the flame microstructure. Results demonstrate that combustion dynamics in wake-stabilized flames can be characterized using a single non-dimensional parameter that collapses many response measures over a range of operating conditions and fuel composition, including the critical wake length at which dynamics is first observed, the critical phase at which transition among dynamic modes is encountered, and the limit cycle amplitude, emphasizing the role of the physics and chemistry of the flame processes in driving the overall system dynamics and encapsulating the governing mechanisms. The proposed parameter is based on the normalized strained flame consumption speed, which encapsulates the flow-combustion interactions at the flame scale. PIV data reveal significant changes in the recirculation zone structure depending on the equivalence ratio and the fuel composition, demonstrating the impact of chemical kinetics on the flow. These changes are shown to correlate strongly with the stability characteristics, i.e., blow-off and flashback limits as well as the onset of the thermoacoustic instabilities, highlighting a critical role of the recirculation zone in flame stabilization. An expression for the critical phase at which dynamic mode transition occurs is derived based on the linear acoustic energy balance. It is shown that the critical phase is also a function of the same non-dimensional parameter, suggesting that it represents the state within a dynamic mode as well. Results show that the normalized phase correlates with the upper- and lower-boundary of a dynamic mode, thus being a necessary and sufficient condition for dynamics. The results provide a metric for quantifying the instability margins of fuel-flexible combustors operating over a wide range of conditions. Analysis of PIV and OH-LIF data suggests that heat transfer near the flame-holder may play an important role in determining the stability characteristics. The impact of heat transfer on the onset of dynamics is experimentally investigated using different flame-holders. Results demonstrate the effectiveness of using heat-insulating materials as a passive control strategy to prevent or significantly delay the onset of the instabilities.

Dominant Interscale Dynamics in Premixed Turbulent Combustion for Application to Large-Eddy Simulation

Download Dominant Interscale Dynamics in Premixed Turbulent Combustion for Application to Large-Eddy Simulation PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (125 download)

DOWNLOAD NOW!


Book Synopsis Dominant Interscale Dynamics in Premixed Turbulent Combustion for Application to Large-Eddy Simulation by : Yash Girish Shah

Download or read book Dominant Interscale Dynamics in Premixed Turbulent Combustion for Application to Large-Eddy Simulation written by Yash Girish Shah and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The large-eddy simulation (LES) approach has become an important tool for engineering design and optimization of combustion devices. In a properly designed LES, the larger-scale flow variations are resolved by the effective numerical grid, which incorporates the implicit/explicit filtering introduced by the spatial filtering from the grid, artificial diffusion from numerical schemes, and modeled terms. The dynamical consequences of the remaining subfilter-scale (SFS) fluctuations below the effective grid to the evolution of grid-resolved scales (RS) motions in dynamically relevant physical variables are modeled. The nonlinearities in the dynamical evolution of resolved-scale variables that result from the inherent nonlinear coupling between the resolved and subfilter scales are often not sufficiently well captured in turbulent combustion, as the intermediate species that participate in the heat release process are dominantly only at chemical length and time scales well within the subfilter scales. In this research work, we explore new LES modeling strategies that represent the RS-SFS interactions in the evolution of RS primary variables (momentum, energy and species concentrations) more directly by approximating the SFS content that contributes dominantly to the dynamical evolution of RS quantities using simple mathematical forms. To achieve this, we first obtain a highly resolved three-dimensional Direct Numerical Simulation (DNS) dataset of flame-turbulence interactions that capture the essential RS-SFS interactions in primary variables over a wide range of scales. To systematically analyze the RS-SFS interscale couplings for LES, we then obtain the scale content as the Fourier space representation of the inherently inhomogeneous DNS dataset by applying a discontinuity removal procedure that removes the unphysical gradients naturally introduced at the boundaries of the computational domain by the periodic extension that occurs with the Fourier transform over a bounded domain. The Fourier space representation of primary variables in turbulence-flame dynamical interactions are systematically analyzed. Variables that display high gradients across the flame front over length scales comparable to or larger than flame scales are found to have higher Fourier variance contributions at wavenumbers below flame scale wavenumber, while Fourier variance contributions from variables that are localized only within the flame are found to be distributed to higher wavenumbers in Fourier space. Using this Fourier space representation, we systematically determine the scales of the energy-dominant flow variations in momentum and enthalpy that are resolved by LES and objectively identify the RS and SFS fluctuations for other primary variables. Variables that display frontal variations surrounding the flame are found to be dominantly resolved while those variables that are localized only within the flame are found to be dominantly subfilter scale. These differences in Fourier variance distributions are shown to have implications to the extent of RS-SFS interactions between these variables. We take advantage of the mathematical property of the Fourier spectral description that allows the nonlinearities from the advective transport and chemical reaction rates in the dynamical system to be expressed as elemental sums over triadic interactions involving three wavevectors and quadrad interactions involving four wavevectors between the RS and SFS fluctuations. Using this elemental representation, the SFS content that contributes dominantly to the dynamical evolution of resolved-scales advective nonlinearity is identified by applying the triads downselection procedure [75]. We find that RS-SFS interactions involving SFS content from significantly larger scales compared to the smallest resolvable scales in the DNS are required to adequately estimate the resolved-scale advective nonlinearity in LES. These dynamically dominant SFS for RS advective nonlinearity span over a broader range of wavenumbers for dominantly SFS variables compared to variables that are dominantly resolved-scale. To study the dominant RS-SFS interactions in the chemical nonlinearity, a new two-stage downselection procedure is developed in this work, which expresses the quadrad interactions between the reaction rate constant and the species concentrations to the resolved chemical reaction rates first into triadic interactions between the chemical reaction rate constant and the product of species concentrations. The product of species concentrations is then expressed as a triadic sum over interactions between individual species concentrations and the corresponding dynamically dominant SFS is extracted from both stages using triad downselect procedure for second-order nonlinearities. The dynamically dominant SFS resulting from this procedure is found to be considerably reduced from the full SFS and is shown to be effective in adequately approximating the chemical reaction rates at resolved scales through RS-SFS interactions. The structure underlying the distribution of these dynamically dominant SFS fluctuations in species concentrations are identified for key species in representative reactions in regions where the incorporation of the SFS content is impactful to the estimation of chemical reaction rates in LES. The dynamically dominant SFS species structure is found in two groupings: ``single-banded'' structure characterized by one distinct peak, and ``double-banded'' structure characterized by two peaks of opposite signs. Species that are produced and consumed within the flame are observed to have single-banded structure and species displaying a frontal behavior are observed to have double-banded structure in their dynamically dominant SFS concentrations on average. The local structure of the dynamically dominant SFS species concentrations surrounding the flame is impacted by neighboring flame-flame interactions as well as by variations in flame curvature. The impacts of the flame-flame interactions are strong when the dynamically dominant SFS species structure has ``large'' length scales with concentration peaks significantly displaced from the flame front. Finally, mathematical forms to approximate the mean single and double banded structure in the dynamically dominant SFS concentrations are proposed for application within a structure-based SFS modeling strategy which directly embeds the interaction between the modeled dominant SFS content and the RS evolution within existing LES frameworks. This research lays the groundwork for future LES model developments that utilize this strategy for improving LES predictions of resolved-scale dynamics.

Turbulent Methane Oxygen CFD Thermal Effects on Rotating Detonation Engine

Download Turbulent Methane Oxygen CFD Thermal Effects on Rotating Detonation Engine PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 60 pages
Book Rating : 4.:/5 (111 download)

DOWNLOAD NOW!


Book Synopsis Turbulent Methane Oxygen CFD Thermal Effects on Rotating Detonation Engine by : Daniel Mendez

Download or read book Turbulent Methane Oxygen CFD Thermal Effects on Rotating Detonation Engine written by Daniel Mendez and published by . This book was released on 2019 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal effects from Methane-Oxygen stoichiometric simulated heat of combustion in a turbulent annular rotating detonation engine (RDE) have been found to be manageable without the need of thermal management supporting subsystems under 1 second short pulse runs. Computer fluid dynamic simulations, using methane Lower Heating Value, show the current radially injected mixing design and copper & stainless-steel material choice to provide enough thermal management benefits. The transient and steady state thermal benefits of radially staggered injected fuel and oxidizer was explored in detail as well as the heat flux through walls and the overall dissipation of energy through conduction, convection, and radiation. Thermal management design improvements were also explored to increase the engine lifecycles.

Turbulent Combustion

Download Turbulent Combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (136 download)

DOWNLOAD NOW!


Book Synopsis Turbulent Combustion by : Von Karman Institute for fluid dynamics

Download or read book Turbulent Combustion written by Von Karman Institute for fluid dynamics and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Thermal Power Plants

Download Thermal Power Plants PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9535110950
Total Pages : 190 pages
Book Rating : 4.5/5 (351 download)

DOWNLOAD NOW!


Book Synopsis Thermal Power Plants by : Mohammad Rasul

Download or read book Thermal Power Plants written by Mohammad Rasul and published by BoD – Books on Demand. This book was released on 2013-04-17 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal power plants are one of the most important process industries for engineering professionals. Over the past decades, the power sector is facing a number of critical issues; however, the most fundamental challenge is meeting the growing power demand in sustainable and efficient ways. Practicing power plant engineers not only look after operation and maintenance of the plant, but, also look after range of activities including research and development, starting from power generation to environmental aspects of power plants. The book Thermal Power Plants - Advanced Applications introduces analysis of plant performance, energy efficiency, combustion, heat transfer, renewable power generation, catalytic reduction of dissolved oxygen and environmental aspects of combustion residues. This book addresses issues related to both coal fired and steam power plants. The book is suitable for both undergraduate and research higher degree students, and of course for practicing power plant engineers.

Turbulent Combustion Modeling

Download Turbulent Combustion Modeling PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9789400704138
Total Pages : 490 pages
Book Rating : 4.7/5 (41 download)

DOWNLOAD NOW!


Book Synopsis Turbulent Combustion Modeling by : Tarek Echekki

Download or read book Turbulent Combustion Modeling written by Tarek Echekki and published by Springer. This book was released on 2011-04-09 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.