Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Dynamical Biostatistical Models
Download Dynamical Biostatistical Models full books in PDF, epub, and Kindle. Read online Dynamical Biostatistical Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Dynamical Biostatistical Models by : Daniel Commenges
Download or read book Dynamical Biostatistical Models written by Daniel Commenges and published by CRC Press. This book was released on 2015-10-02 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical Biostatistical Models presents statistical models and methods for the analysis of longitudinal data. The book focuses on models for analyzing repeated measures of quantitative and qualitative variables and events history, including survival and multistate models. Most of the advanced methods, such as multistate and joint models, can be ap
Book Synopsis Dynamic Models in Biology by : Stephen P. Ellner
Download or read book Dynamic Models in Biology written by Stephen P. Ellner and published by Princeton University Press. This book was released on 2011-09-19 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: From controlling disease outbreaks to predicting heart attacks, dynamic models are increasingly crucial for understanding biological processes. Many universities are starting undergraduate programs in computational biology to introduce students to this rapidly growing field. In Dynamic Models in Biology, the first text on dynamic models specifically written for undergraduate students in the biological sciences, ecologist Stephen Ellner and mathematician John Guckenheimer teach students how to understand, build, and use dynamic models in biology. Developed from a course taught by Ellner and Guckenheimer at Cornell University, the book is organized around biological applications, with mathematics and computing developed through case studies at the molecular, cellular, and population levels. The authors cover both simple analytic models--the sort usually found in mathematical biology texts--and the complex computational models now used by both biologists and mathematicians. Linked to a Web site with computer-lab materials and exercises, Dynamic Models in Biology is a major new introduction to dynamic models for students in the biological sciences, mathematics, and engineering.
Book Synopsis Statistical Modeling for Naturalists by : Pedro F. Quintana Ascencio
Download or read book Statistical Modeling for Naturalists written by Pedro F. Quintana Ascencio and published by Cambridge Scholars Publishing. This book was released on 2022-01-31 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will allow naturalists, nature stewards, and graduate students to appreciate and comprehend basic statistical concepts as a bridge to more complex themes relevant to their daily work. Although there are excellent sources on more specialized analytical topics relevant to naturalists, this introductory book makes a connection with the experience and needs of field practitioners. It uses aspects of the natural history of the Florida scrub relevant for conservation and management as examples of analytical issues pertinent to the naturalist in a broader context. Each chapter identifies important ecological questions and then provides approaches to evaluate data, focusing on the analytical decision-making process. The book guides the reader on frequently overlooked aspects such as the understanding of model assumptions, alternative model specifications, model output interpretation, and model limitations.
Book Synopsis Simulating Social Phenomena by : Rosaria Conte
Download or read book Simulating Social Phenomena written by Rosaria Conte and published by Springer. This book was released on 1997-08-19 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book experts from quite different fields present simulations of social phenomena: economists, sociologists, political scientists, psychologists, cognitive scientists, organisational scientists, decision scientists, geographers, computer scientists, AI and AL scientists, mathematicians and statisticians. They simulate markets, organisations, economic dynamics, coalition formation, the emergence of cooperation and exchange, bargaining, decision making, learning, and adaptation. The history, problems, and perspectives of simulating social phenomena are explicitly discussed.
Book Synopsis Models of Science Dynamics by : Andrea Scharnhorst
Download or read book Models of Science Dynamics written by Andrea Scharnhorst and published by Springer Science & Business Media. This book was released on 2012-01-24 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Models of Science Dynamics aims to capture the structure and evolution of science, the emerging arena in which scholars, science and the communication of science become themselves the basic objects of research. In order to capture the essence of phenomena as diverse as the structure of co-authorship networks or the evolution of citation diffusion patterns, such models can be represented by conceptual models based on historical and ethnographic observations, mathematical descriptions of measurable phenomena, or computational algorithms. Despite its evident importance, the mathematical modeling of science still lacks a unifying framework and a comprehensive study of the topic. This volume fills this gap, reviewing and describing major threads in the mathematical modeling of science dynamics for a wider academic and professional audience. The model classes presented cover stochastic and statistical models, system-dynamics approaches, agent-based simulations, population-dynamics models, and complex-network models. The book comprises an introduction and a foundational chapter that defines and operationalizes terminology used in the study of science, as well as a review chapter that discusses the history of mathematical approaches to modeling science from an algorithmic-historiography perspective. It concludes with a survey of remaining challenges for future science models and their relevance for science and science policy.
Book Synopsis Dynamic Regression Models for Survival Data by : Torben Martinussen
Download or read book Dynamic Regression Models for Survival Data written by Torben Martinussen and published by Springer Science & Business Media. This book was released on 2007-11-24 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies and applies modern flexible regression models for survival data with a special focus on extensions of the Cox model and alternative models with the aim of describing time-varying effects of explanatory variables. Use of the suggested models and methods is illustrated on real data examples, using the R-package timereg developed by the authors, which is applied throughout the book with worked examples for the data sets.
Book Synopsis Statistical Learning for Big Dependent Data by : Daniel Peña
Download or read book Statistical Learning for Big Dependent Data written by Daniel Peña and published by John Wiley & Sons. This book was released on 2021-05-04 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master advanced topics in the analysis of large, dynamically dependent datasets with this insightful resource Statistical Learning with Big Dependent Data delivers a comprehensive presentation of the statistical and machine learning methods useful for analyzing and forecasting large and dynamically dependent data sets. The book presents automatic procedures for modelling and forecasting large sets of time series data. Beginning with some visualization tools, the book discusses procedures and methods for finding outliers, clusters, and other types of heterogeneity in big dependent data. It then introduces various dimension reduction methods, including regularization and factor models such as regularized Lasso in the presence of dynamical dependence and dynamic factor models. The book also covers other forecasting procedures, including index models, partial least squares, boosting, and now-casting. It further presents machine-learning methods, including neural network, deep learning, classification and regression trees and random forests. Finally, procedures for modelling and forecasting spatio-temporal dependent data are also presented. Throughout the book, the advantages and disadvantages of the methods discussed are given. The book uses real-world examples to demonstrate applications, including use of many R packages. Finally, an R package associated with the book is available to assist readers in reproducing the analyses of examples and to facilitate real applications. Analysis of Big Dependent Data includes a wide variety of topics for modeling and understanding big dependent data, like: New ways to plot large sets of time series An automatic procedure to build univariate ARMA models for individual components of a large data set Powerful outlier detection procedures for large sets of related time series New methods for finding the number of clusters of time series and discrimination methods , including vector support machines, for time series Broad coverage of dynamic factor models including new representations and estimation methods for generalized dynamic factor models Discussion on the usefulness of lasso with time series and an evaluation of several machine learning procedure for forecasting large sets of time series Forecasting large sets of time series with exogenous variables, including discussions of index models, partial least squares, and boosting. Introduction of modern procedures for modeling and forecasting spatio-temporal data Perfect for PhD students and researchers in business, economics, engineering, and science: Statistical Learning with Big Dependent Data also belongs to the bookshelves of practitioners in these fields who hope to improve their understanding of statistical and machine learning methods for analyzing and forecasting big dependent data.
Book Synopsis Statistical Models by : David A. Freedman
Download or read book Statistical Models written by David A. Freedman and published by Cambridge University Press. This book was released on 2009-04-27 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lively and engaging book explains the things you have to know in order to read empirical papers in the social and health sciences, as well as the techniques you need to build statistical models of your own. The discussion in the book is organized around published studies, as are many of the exercises. Relevant journal articles are reprinted at the back of the book. Freedman makes a thorough appraisal of the statistical methods in these papers and in a variety of other examples. He illustrates the principles of modelling, and the pitfalls. The discussion shows you how to think about the critical issues - including the connection (or lack of it) between the statistical models and the real phenomena. The book is written for advanced undergraduates and beginning graduate students in statistics, as well as students and professionals in the social and health sciences.
Book Synopsis Exactly Solved Models in Statistical Mechanics by : Rodney J. Baxter
Download or read book Exactly Solved Models in Statistical Mechanics written by Rodney J. Baxter and published by Elsevier. This book was released on 2016-06-12 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exactly Solved Models in Statistical Mechanics
Book Synopsis Statistical Theory and Modelling by : D.V. Hinkley
Download or read book Statistical Theory and Modelling written by D.V. Hinkley and published by Chapman and Hall/CRC. This book was released on 1991 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Theory and Modelling is a celebration of the work of Sir David Cox, FRS, and reflects his many interests in statistical theory and methods. It is a series of review articles, intended as an introduction to a variety of topics suitable for the graduate student and practicing statistician. Many of the topics are the subject of book-length treatments by Sir David and authors of this volume. Each chapter leads to a larger literature. Topics range the breadth of statistics and include modern degvelopments in statistical theory and methods. Special topics covered are generalized linear models, residuals and diagnostics, survival analysis, sequential analysis, time series, stochastic modelling of spatial data, design of experiments, likelihood inference and statistical approximation.
Book Synopsis Dynamic Prediction in Clinical Survival Analysis by : Hans van Houwelingen
Download or read book Dynamic Prediction in Clinical Survival Analysis written by Hans van Houwelingen and published by CRC Press. This book was released on 2011-11-09 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a huge amount of literature on statistical models for the prediction of survival after diagnosis of a wide range of diseases like cancer, cardiovascular disease, and chronic kidney disease. Current practice is to use prediction models based on the Cox proportional hazards model and to present those as static models for remaining lifetime a
Book Synopsis Statistics for Spatio-Temporal Data by : Noel Cressie
Download or read book Statistics for Spatio-Temporal Data written by Noel Cressie and published by John Wiley & Sons. This book was released on 2015-11-02 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.
Book Synopsis Statistical Methods for Spatio-Temporal Systems by : Barbel Finkenstadt
Download or read book Statistical Methods for Spatio-Temporal Systems written by Barbel Finkenstadt and published by CRC Press. This book was released on 2006-10-20 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Methods for Spatio-Temporal Systems presents current statistical research issues on spatio-temporal data modeling and will promote advances in research and a greater understanding between the mechanistic and the statistical modeling communities. Contributed by leading researchers in the field, each self-contained chapter starts w
Book Synopsis Advanced Data Analysis in Neuroscience by : Daniel Durstewitz
Download or read book Advanced Data Analysis in Neuroscience written by Daniel Durstewitz and published by Springer. This book was released on 2017-09-15 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for use in advanced graduate courses in statistics / machine learning, as well as for all experimental neuroscientists seeking to understand statistical methods at a deeper level, and theoretical neuroscientists with a limited background in statistics. It reviews almost all areas of applied statistics, from basic statistical estimation and test theory, linear and nonlinear approaches for regression and classification, to model selection and methods for dimensionality reduction, density estimation and unsupervised clustering. Its focus, however, is linear and nonlinear time series analysis from a dynamical systems perspective, based on which it aims to convey an understanding also of the dynamical mechanisms that could have generated observed time series. Further, it integrates computational modeling of behavioral and neural dynamics with statistical estimation and hypothesis testing. This way computational models in neuroscience are not only explanatory frameworks, but become powerful, quantitative data-analytical tools in themselves that enable researchers to look beyond the data surface and unravel underlying mechanisms. Interactive examples of most methods are provided through a package of MatLab routines, encouraging a playful approach to the subject, and providing readers with a better feel for the practical aspects of the methods covered. "Computational neuroscience is essential for integrating and providing a basis for understanding the myriads of remarkable laboratory data on nervous system functions. Daniel Durstewitz has excellently covered the breadth of computational neuroscience from statistical interpretations of data to biophysically based modeling of the neurobiological sources of those data. His presentation is clear, pedagogically sound, and readily useable by experts and beginners alike. It is a pleasure to recommend this very well crafted discussion to experimental neuroscientists as well as mathematically well versed Physicists. The book acts as a window to the issues, to the questions, and to the tools for finding the answers to interesting inquiries about brains and how they function." Henry D. I. Abarbanel Physics and Scripps Institution of Oceanography, University of California, San Diego “This book delivers a clear and thorough introduction to sophisticated analysis approaches useful in computational neuroscience. The models described and the examples provided will help readers develop critical intuitions into what the methods reveal about data. The overall approach of the book reflects the extensive experience Prof. Durstewitz has developed as a leading practitioner of computational neuroscience. “ Bruno B. Averbeck
Download or read book Modeling with Data written by Ben Klemens and published by Princeton University Press. This book was released on 2008-10-06 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling with Data fully explains how to execute computationally intensive analyses on very large data sets, showing readers how to determine the best methods for solving a variety of different problems, how to create and debug statistical models, and how to run an analysis and evaluate the results. Ben Klemens introduces a set of open and unlimited tools, and uses them to demonstrate data management, analysis, and simulation techniques essential for dealing with large data sets and computationally intensive procedures. He then demonstrates how to easily apply these tools to the many threads of statistical technique, including classical, Bayesian, maximum likelihood, and Monte Carlo methods. Klemens's accessible survey describes these models in a unified and nontraditional manner, providing alternative ways of looking at statistical concepts that often befuddle students. The book includes nearly one hundred sample programs of all kinds. Links to these programs will be available on this page at a later date. Modeling with Data will interest anyone looking for a comprehensive guide to these powerful statistical tools, including researchers and graduate students in the social sciences, biology, engineering, economics, and applied mathematics.
Book Synopsis Design & Analysis of Clinical Trials for Economic Evaluation & Reimbursement by : Iftekhar Khan
Download or read book Design & Analysis of Clinical Trials for Economic Evaluation & Reimbursement written by Iftekhar Khan and published by CRC Press. This book was released on 2015-11-11 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Economic evaluation has become an essential component of clinical trial design to show that new treatments and technologies offer value to payers in various healthcare systems. Although many books exist that address the theoretical or practical aspects of cost-effectiveness analysis, this book differentiates itself from the competition by detailing
Book Synopsis Mathematical and Statistical Models and Methods in Reliability by : V.V. Rykov
Download or read book Mathematical and Statistical Models and Methods in Reliability written by V.V. Rykov and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a selection of invited chapters, all of which deal with various aspects of mathematical and statistical models and methods in reliability. Written by renowned experts in the field of reliability, the contributions cover a wide range of applications, reflecting recent developments in areas such as survival analysis, aging, lifetime data analysis, artificial intelligence, medicine, carcinogenesis studies, nuclear power, financial modeling, aircraft engineering, quality control, and transportation. Mathematical and Statistical Models and Methods in Reliability is an excellent reference text for researchers and practitioners in applied probability and statistics, industrial statistics, engineering, medicine, finance, transportation, the oil and gas industry, and artificial intelligence.