Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Dynamic Variable Selection In High Dimensional Predictive Regressions
Download Dynamic Variable Selection In High Dimensional Predictive Regressions full books in PDF, epub, and Kindle. Read online Dynamic Variable Selection In High Dimensional Predictive Regressions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Forecasting with Exponential Smoothing by : Rob Hyndman
Download or read book Forecasting with Exponential Smoothing written by Rob Hyndman and published by Springer Science & Business Media. This book was released on 2008-06-19 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exponential smoothing methods have been around since the 1950s, and are still the most popular forecasting methods used in business and industry. However, a modeling framework incorporating stochastic models, likelihood calculation, prediction intervals and procedures for model selection, was not developed until recently. This book brings together all of the important new results on the state space framework for exponential smoothing. It will be of interest to people wanting to apply the methods in their own area of interest as well as for researchers wanting to take the ideas in new directions. Part 1 provides an introduction to exponential smoothing and the underlying models. The essential details are given in Part 2, which also provide links to the most important papers in the literature. More advanced topics are covered in Part 3, including the mathematical properties of the models and extensions of the models for specific problems. Applications to particular domains are discussed in Part 4.
Book Synopsis Dynamic Factor Models by : Siem Jan Koopman
Download or read book Dynamic Factor Models written by Siem Jan Koopman and published by Emerald Group Publishing. This book was released on 2016-01-08 with total page 685 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume explores dynamic factor model specification, asymptotic and finite-sample behavior of parameter estimators, identification, frequentist and Bayesian estimation of the corresponding state space models, and applications.
Book Synopsis Handbook of Economic Forecasting by : Graham Elliott
Download or read book Handbook of Economic Forecasting written by Graham Elliott and published by Elsevier. This book was released on 2013-08-23 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: The highly prized ability to make financial plans with some certainty about the future comes from the core fields of economics. In recent years the availability of more data, analytical tools of greater precision, and ex post studies of business decisions have increased demand for information about economic forecasting. Volumes 2A and 2B, which follows Nobel laureate Clive Granger's Volume 1 (2006), concentrate on two major subjects. Volume 2A covers innovations in methodologies, specifically macroforecasting and forecasting financial variables. Volume 2B investigates commercial applications, with sections on forecasters' objectives and methodologies. Experts provide surveys of a large range of literature scattered across applied and theoretical statistics journals as well as econometrics and empirical economics journals. The Handbook of Economic Forecasting Volumes 2A and 2B provide a unique compilation of chapters giving a coherent overview of forecasting theory and applications in one place and with up-to-date accounts of all major conceptual issues. - Focuses on innovation in economic forecasting via industry applications - Presents coherent summaries of subjects in economic forecasting that stretch from methodologies to applications - Makes details about economic forecasting accessible to scholars in fields outside economics
Book Synopsis Dynamic Factor Models by : Jörg Breitung
Download or read book Dynamic Factor Models written by Jörg Breitung and published by . This book was released on 2005 with total page 29 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Empirical Asset Pricing by : Wayne Ferson
Download or read book Empirical Asset Pricing written by Wayne Ferson and published by MIT Press. This book was released on 2019-03-12 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
Book Synopsis Cointegration and Long-Horizon Forecasting by : Mr.Peter F. Christoffersen
Download or read book Cointegration and Long-Horizon Forecasting written by Mr.Peter F. Christoffersen and published by International Monetary Fund. This book was released on 1997-05-01 with total page 31 pages. Available in PDF, EPUB and Kindle. Book excerpt: Imposing cointegration on a forecasting system, if cointegration is present, is believed to improve long-horizon forecasts. Contrary to this belief, at long horizons nothing is lost by ignoring cointegration when the forecasts are evaluated using standard multivariate forecast accuracy measures. In fact, simple univariate Box-Jenkins forecasts are just as accurate. Our results highlight a potentially important deficiency of standard forecast accuracy measures—they fail to value the maintenance of cointegrating relationships among variables—and we suggest alternatives that explicitly do so.
Book Synopsis Handbook of Dynamic Data Driven Applications Systems by : Frederica Darema
Download or read book Handbook of Dynamic Data Driven Applications Systems written by Frederica Darema and published by Springer Nature. This book was released on 2023-10-16 with total page 937 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Second Volume in the series Handbook of Dynamic Data Driven Applications Systems (DDDAS) expands the scope of the methods and the application areas presented in the first Volume and aims to provide additional and extended content of the increasing set of science and engineering advances for new capabilities enabled through DDDAS. The methods and examples of breakthroughs presented in the book series capture the DDDAS paradigm and its scientific and technological impact and benefits. The DDDAS paradigm and the ensuing DDDAS-based frameworks for systems’ analysis and design have been shown to engender new and advanced capabilities for understanding, analysis, and management of engineered, natural, and societal systems (“applications systems”), and for the commensurate wide set of scientific and engineering fields and applications, as well as foundational areas. The DDDAS book series aims to be a reference source of many of the important research and development efforts conducted under the rubric of DDDAS, and to also inspire the broader communities of researchers and developers about the potential in their respective areas of interest, of the application and the exploitation of the DDDAS paradigm and the ensuing frameworks, through the examples and case studies presented, either within their own field or other fields of study. As in the first volume, the chapters in this book reflect research work conducted over the years starting in the 1990’s to the present. Here, the theory and application content are considered for: Foundational Methods Materials Systems Structural Systems Energy Systems Environmental Systems: Domain Assessment & Adverse Conditions/Wildfires Surveillance Systems Space Awareness Systems Healthcare Systems Decision Support Systems Cyber Security Systems Design of Computer Systems The readers of this book series will benefit from DDDAS theory advances such as object estimation, information fusion, and sensor management. The increased interest in Artificial Intelligence (AI), Machine Learning and Neural Networks (NN) provides opportunities for DDDAS-based methods to show the key role DDDAS plays in enabling AI capabilities; address challenges that ML-alone does not, and also show how ML in combination with DDDAS-based methods can deliver the advanced capabilities sought; likewise, infusion of DDDAS-like approaches in NN-methods strengthens such methods. Moreover, the “DDDAS-based Digital Twin” or “Dynamic Digital Twin”, goes beyond the traditional DT notion where the model and the physical system are viewed side-by-side in a static way, to a paradigm where the model dynamically interacts with the physical system through its instrumentation, (per the DDDAS feed-back control loop between model and instrumentation).
Book Synopsis The Oxford Handbook of Economic Forecasting by : Michael P. Clements
Download or read book The Oxford Handbook of Economic Forecasting written by Michael P. Clements and published by OUP USA. This book was released on 2011-07-08 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
Book Synopsis Statistical Learning with Sparsity by : Trevor Hastie
Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl
Book Synopsis Macroeconomic Forecasting in the Era of Big Data by : Peter Fuleky
Download or read book Macroeconomic Forecasting in the Era of Big Data written by Peter Fuleky and published by Springer Nature. This book was released on 2019-11-28 with total page 716 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
Book Synopsis Lasso Regressions and Forecasting Models in Applied Stress Testing by : Mr.Jorge A. Chan-Lau
Download or read book Lasso Regressions and Forecasting Models in Applied Stress Testing written by Mr.Jorge A. Chan-Lau and published by International Monetary Fund. This book was released on 2017-05-05 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model selection and forecasting in stress tests can be facilitated using machine learning techniques. These techniques have proved robust in other fields for dealing with the curse of dimensionality, a situation often encountered in applied stress testing. Lasso regressions, in particular, are well suited for building forecasting models when the number of potential covariates is large, and the number of observations is small or roughly equal to the number of covariates. This paper presents a conceptual overview of lasso regressions, explains how they fit in applied stress tests, describes its advantages over other model selection methods, and illustrates their application by constructing forecasting models of sectoral probabilities of default in an advanced emerging market economy.
Book Synopsis Mixed Effects Models for Complex Data by : Lang Wu
Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Book Synopsis Forecasting Economic Time Series by : Michael Clements
Download or read book Forecasting Economic Time Series written by Michael Clements and published by Cambridge University Press. This book was released on 1998-10-08 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a formal analysis of the models, procedures, and measures of economic forecasting with a view to improving forecasting practice. David Hendry and Michael Clements base the analyses on assumptions pertinent to the economies to be forecast, viz. a non-constant, evolving economic system, and econometric models whose form and structure are unknown a priori. The authors find that conclusions which can be established formally for constant-parameter stationary processes and correctly-specified models often do not hold when unrealistic assumptions are relaxed. Despite the difficulty of proceeding formally when models are mis-specified in unknown ways for non-stationary processes that are subject to structural breaks, Hendry and Clements show that significant insights can be gleaned. For example, a formal taxonomy of forecasting errors can be developed, the role of causal information clarified, intercept corrections re-established as a method for achieving robustness against forms of structural change, and measures of forecast accuracy re-interpreted.
Book Synopsis Applied Predictive Modeling by : Max Kuhn
Download or read book Applied Predictive Modeling written by Max Kuhn and published by Springer Science & Business Media. This book was released on 2013-05-17 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.
Book Synopsis How I Made One Million Dollars Last Year Trading Commodities by : Larry R. Williams
Download or read book How I Made One Million Dollars Last Year Trading Commodities written by Larry R. Williams and published by Windsor Books/Probus. This book was released on 1979 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fascinating book is loaded with practical information designed to help you in the commodity market. The author's method...proven by his million dollar success...does not involve complicated math or subjective evaluation. There are two completely systematic methods; %R and Momentum. The essence fo these methods is that they tell you if the super powers are long or short; when the super powers expect a major move to start; what commodities are in true bull or bear markets; when to start buying and when to sell for gargantuan profits. This book is a must if you're a stock or commodity trader. It will expose to you an exciting new approach to trading and thinking--the same approach that has made Larry Williams a millionaire.
Download or read book U-MIDAS written by Claudia Foroni and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Big Data for Twenty-First-Century Economic Statistics by : Katharine G. Abraham
Download or read book Big Data for Twenty-First-Century Economic Statistics written by Katharine G. Abraham and published by University of Chicago Press. This book was released on 2022-03-11 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction.Big data for twenty-first-century economic statistics: the future is now /Katharine G. Abraham, Ron S. Jarmin, Brian C. Moyer, and Matthew D. Shapiro --Toward comprehensive use of big data in economic statistics.Reengineering key national economic indicators /Gabriel Ehrlich, John Haltiwanger, Ron S. Jarmin, David Johnson, and Matthew D. Shapiro ;Big data in the US consumer price index: experiences and plans /Crystal G. Konny, Brendan K. Williams, and David M. Friedman ;Improving retail trade data products using alternative data sources /Rebecca J. Hutchinson ;From transaction data to economic statistics: constructing real-time, high-frequency, geographic measures of consumer spending /Aditya Aladangady, Shifrah Aron-Dine, Wendy Dunn, Laura Feiveson, Paul Lengermann, and Claudia Sahm ;Improving the accuracy of economic measurement with multiple data sources: the case of payroll employment data /Tomaz Cajner, Leland D. Crane, Ryan A. Decker, Adrian Hamins-Puertolas, and Christopher Kurz --Uses of big data for classification.Transforming naturally occurring text data into economic statistics: the case of online job vacancy postings /Arthur Turrell, Bradley Speigner, Jyldyz Djumalieva, David Copple, and James Thurgood ;Automating response evaluation for franchising questions on the 2017 economic census /Joseph Staudt, Yifang Wei, Lisa Singh, Shawn Klimek, J. Bradford Jensen, and Andrew Baer ;Using public data to generate industrial classification codes /John Cuffe, Sudip Bhattacharjee, Ugochukwu Etudo, Justin C. Smith, Nevada Basdeo, Nathaniel Burbank, and Shawn R. Roberts --Uses of big data for sectoral measurement.Nowcasting the local economy: using Yelp data to measure economic activity /Edward L. Glaeser, Hyunjin Kim, and Michael Luca ;Unit values for import and export price indexes: a proof of concept /Don A. Fast and Susan E. Fleck ;Quantifying productivity growth in the delivery of important episodes of care within the Medicare program using insurance claims and administrative data /John A. Romley, Abe Dunn, Dana Goldman, and Neeraj Sood ;Valuing housing services in the era of big data: a user cost approach leveraging Zillow microdata /Marina Gindelsky, Jeremy G. Moulton, and Scott A. Wentland --Methodological challenges and advances.Off to the races: a comparison of machine learning and alternative data for predicting economic indicators /Jeffrey C. Chen, Abe Dunn, Kyle Hood, Alexander Driessen, and Andrea Batch ;A machine learning analysis of seasonal and cyclical sales in weekly scanner data /Rishab Guha and Serena Ng ;Estimating the benefits of new products /W. Erwin Diewert and Robert C. Feenstra.