Dive Into Algorithms

Download Dive Into Algorithms PDF Online Free

Author :
Publisher : No Starch Press
ISBN 13 : 1718500696
Total Pages : 250 pages
Book Rating : 4.7/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Dive Into Algorithms by : Bradford Tuckfield

Download or read book Dive Into Algorithms written by Bradford Tuckfield and published by No Starch Press. This book was released on 2021-01-05 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dive Into Algorithms is a broad introduction to algorithms using the Python Programming Language. Dive Into Algorithms is a wide-ranging, Pythonic tour of many of the world's most interesting algorithms. With little more than a bit of computer programming experience and basic high-school math, you'll explore standard computer science algorithms for searching, sorting, and optimization; human-based algorithms that help us determine how to catch a baseball or eat the right amount at a buffet; and advanced algorithms like ones used in machine learning and artificial intelligence. You'll even explore how ancient Egyptians and Russian peasants used algorithms to multiply numbers, how the ancient Greeks used them to find greatest common divisors, and how Japanese scholars in the age of samurai designed algorithms capable of generating magic squares. You'll explore algorithms that are useful in pure mathematics and learn how mathematical ideas can improve algorithms. You'll learn about an algorithm for generating continued fractions, one for quick calculations of square roots, and another for generating seemingly random sets of numbers. You'll also learn how to: • Use algorithms to debug code, maximize revenue, schedule tasks, and create decision trees • Measure the efficiency and speed of algorithms • Generate Voronoi diagrams for use in various geometric applications • Use algorithms to build a simple chatbot, win at board games, or solve sudoku puzzles • Write code for gradient ascent and descent algorithms that can find the maxima and minima of functions • Use simulated annealing to perform global optimization • Build a decision tree to predict happiness based on a person's characteristics Once you've finished this book you'll understand how to code and implement important algorithms as well as how to measure and optimize their performance, all while learning the nitty-gritty details of today's most powerful algorithms.

Dive Into Algorithms

Download Dive Into Algorithms PDF Online Free

Author :
Publisher : No Starch Press
ISBN 13 : 1718500688
Total Pages : 250 pages
Book Rating : 4.7/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Dive Into Algorithms by : Bradford Tuckfield

Download or read book Dive Into Algorithms written by Bradford Tuckfield and published by No Starch Press. This book was released on 2021-01-25 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dive Into Algorithms is a broad introduction to algorithms using the Python Programming Language. Dive Into Algorithms is a wide-ranging, Pythonic tour of many of the world's most interesting algorithms. With little more than a bit of computer programming experience and basic high-school math, you'll explore standard computer science algorithms for searching, sorting, and optimization; human-based algorithms that help us determine how to catch a baseball or eat the right amount at a buffet; and advanced algorithms like ones used in machine learning and artificial intelligence. You'll even explore how ancient Egyptians and Russian peasants used algorithms to multiply numbers, how the ancient Greeks used them to find greatest common divisors, and how Japanese scholars in the age of samurai designed algorithms capable of generating magic squares. You'll explore algorithms that are useful in pure mathematics and learn how mathematical ideas can improve algorithms. You'll learn about an algorithm for generating continued fractions, one for quick calculations of square roots, and another for generating seemingly random sets of numbers. You'll also learn how to: Use algorithms to debug code, maximize revenue, schedule tasks, and create decision trees Measure the efficiency and speed of algorithms Generate Voronoi diagrams for use in various geometric applications Use algorithms to build a simple chatbot, win at board games, or solve sudoku puzzles Write code for gradient ascent and descent algorithms that can find the maxima and minima of functions Use simulated annealing to perform global optimization Build a decision tree to predict happiness based on a person's characteristics Once you've finished this book you'll understand how to code and implement important algorithms as well as how to measure and optimize their performance, all while learning the nitty-gritty details of today's most powerful algorithms.

Algorithms in a Nutshell

Download Algorithms in a Nutshell PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1449391133
Total Pages : 366 pages
Book Rating : 4.4/5 (493 download)

DOWNLOAD NOW!


Book Synopsis Algorithms in a Nutshell by : George T. Heineman

Download or read book Algorithms in a Nutshell written by George T. Heineman and published by "O'Reilly Media, Inc.". This book was released on 2008-10-14 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Creating robust software requires the use of efficient algorithms, but programmers seldom think about them until a problem occurs. Algorithms in a Nutshell describes a large number of existing algorithms for solving a variety of problems, and helps you select and implement the right algorithm for your needs -- with just enough math to let you understand and analyze algorithm performance. With its focus on application, rather than theory, this book provides efficient code solutions in several programming languages that you can easily adapt to a specific project. Each major algorithm is presented in the style of a design pattern that includes information to help you understand why and when the algorithm is appropriate. With this book, you will: Solve a particular coding problem or improve on the performance of an existing solution Quickly locate algorithms that relate to the problems you want to solve, and determine why a particular algorithm is the right one to use Get algorithmic solutions in C, C++, Java, and Ruby with implementation tips Learn the expected performance of an algorithm, and the conditions it needs to perform at its best Discover the impact that similar design decisions have on different algorithms Learn advanced data structures to improve the efficiency of algorithms With Algorithms in a Nutshell, you'll learn how to improve the performance of key algorithms essential for the success of your software applications.

ALGORITHMS OF THE INTELLIGENT WEB

Download ALGORITHMS OF THE INTELLIGENT WEB PDF Online Free

Author :
Publisher :
ISBN 13 : 9789350040331
Total Pages : 368 pages
Book Rating : 4.0/5 (43 download)

DOWNLOAD NOW!


Book Synopsis ALGORITHMS OF THE INTELLIGENT WEB by : Haralambos Marmanis

Download or read book ALGORITHMS OF THE INTELLIGENT WEB written by Haralambos Marmanis and published by . This book was released on 2011-03-01 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special Features: Learning Elements:· How to create recommendations just like those on Netflix and Amazon· How to implement Google's Pagerank algorithm· How to discover matches on social-networking sites· How to organize the discussions on your favorite news group· How to select topics of interest from shared bookmarks· How to leverage user clicks· How to categorize emails based on their content· How to build applications that do targeted advertising· How to implement fraud detection About The Book: Algorithms of the Intelligent Web is an example-driven blueprint for creating applications that collect, analyze, and act on the massive quantities of data users leave in their wake as they use the web. You'll learn how to build Amazon- and Netflix-style recommendation engines, and how the same techniques apply to people matches on social-networking sites. See how click-trace analysis can result in smarter ad rotations. With a plethora of examples and extensive detail, this book shows you how to build Web 2.0 applications that are as smart as your users.

Python Algorithms

Download Python Algorithms PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484200551
Total Pages : 303 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Python Algorithms by : Magnus Lie Hetland

Download or read book Python Algorithms written by Magnus Lie Hetland and published by Apress. This book was released on 2014-09-17 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python Algorithms, Second Edition explains the Python approach to algorithm analysis and design. Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques. The book deals with some of the most important and challenging areas of programming and computer science in a highly readable manner. It covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data structures that are built into the Python language are explained, and the user is shown how to implement and evaluate others.

Python Data Structures and Algorithms

Download Python Data Structures and Algorithms PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1786465337
Total Pages : 303 pages
Book Rating : 4.7/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Python Data Structures and Algorithms by : Benjamin Baka

Download or read book Python Data Structures and Algorithms written by Benjamin Baka and published by Packt Publishing Ltd. This book was released on 2017-05-30 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implement classic and functional data structures and algorithms using Python About This Book A step by step guide, which will provide you with a thorough discussion on the analysis and design of fundamental Python data structures. Get a better understanding of advanced Python concepts such as big-o notation, dynamic programming, and functional data structures. Explore illustrations to present data structures and algorithms, as well as their analysis, in a clear, visual manner. Who This Book Is For The book will appeal to Python developers. A basic knowledge of Python is expected. What You Will Learn Gain a solid understanding of Python data structures. Build sophisticated data applications. Understand the common programming patterns and algorithms used in Python data science. Write efficient robust code. In Detail Data structures allow you to organize data in a particular way efficiently. They are critical to any problem, provide a complete solution, and act like reusable code. In this book, you will learn the essential Python data structures and the most common algorithms. With this easy-to-read book, you will be able to understand the power of linked lists, double linked lists, and circular linked lists. You will be able to create complex data structures such as graphs, stacks and queues. We will explore the application of binary searches and binary search trees. You will learn the common techniques and structures used in tasks such as preprocessing, modeling, and transforming data. We will also discuss how to organize your code in a manageable, consistent, and extendable way. The book will explore in detail sorting algorithms such as bubble sort, selection sort, insertion sort, and merge sort. By the end of the book, you will learn how to build components that are easy to understand, debug, and use in different applications. Style and Approach The easy-to-read book with its fast-paced nature will improve the productivity of Python programmers and improve the performance of Python applications.

Data Algorithms

Download Data Algorithms PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491906154
Total Pages : 778 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Data Algorithms by : Mahmoud Parsian

Download or read book Data Algorithms written by Mahmoud Parsian and published by "O'Reilly Media, Inc.". This book was released on 2015-07-13 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you are ready to dive into the MapReduce framework for processing large datasets, this practical book takes you step by step through the algorithms and tools you need to build distributed MapReduce applications with Apache Hadoop or Apache Spark. Each chapter provides a recipe for solving a massive computational problem, such as building a recommendation system. You’ll learn how to implement the appropriate MapReduce solution with code that you can use in your projects. Dr. Mahmoud Parsian covers basic design patterns, optimization techniques, and data mining and machine learning solutions for problems in bioinformatics, genomics, statistics, and social network analysis. This book also includes an overview of MapReduce, Hadoop, and Spark. Topics include: Market basket analysis for a large set of transactions Data mining algorithms (K-means, KNN, and Naive Bayes) Using huge genomic data to sequence DNA and RNA Naive Bayes theorem and Markov chains for data and market prediction Recommendation algorithms and pairwise document similarity Linear regression, Cox regression, and Pearson correlation Allelic frequency and mining DNA Social network analysis (recommendation systems, counting triangles, sentiment analysis)

Algorithmic Thinking

Download Algorithmic Thinking PDF Online Free

Author :
Publisher : No Starch Press
ISBN 13 : 1718500807
Total Pages : 409 pages
Book Rating : 4.7/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Algorithmic Thinking by : Daniel Zingaro

Download or read book Algorithmic Thinking written by Daniel Zingaro and published by No Starch Press. This book was released on 2020-12-15 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on, problem-based introduction to building algorithms and data structures to solve problems with a computer. Algorithmic Thinking will teach you how to solve challenging programming problems and design your own algorithms. Daniel Zingaro, a master teacher, draws his examples from world-class programming competitions like USACO and IOI. You'll learn how to classify problems, choose data structures, and identify appropriate algorithms. You'll also learn how your choice of data structure, whether a hash table, heap, or tree, can affect runtime and speed up your algorithms; and how to adopt powerful strategies like recursion, dynamic programming, and binary search to solve challenging problems. Line-by-line breakdowns of the code will teach you how to use algorithms and data structures like: The breadth-first search algorithm to find the optimal way to play a board game or find the best way to translate a book Dijkstra's algorithm to determine how many mice can exit a maze or the number of fastest routes between two locations The union-find data structure to answer questions about connections in a social network or determine who are friends or enemies The heap data structure to determine the amount of money given away in a promotion The hash-table data structure to determine whether snowflakes are unique or identify compound words in a dictionary NOTE: Each problem in this book is available on a programming-judge website. You'll find the site's URL and problem ID in the description. What's better than a free correctness check?

Distributed Algorithms

Download Distributed Algorithms PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262026775
Total Pages : 242 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Distributed Algorithms by : Wan Fokkink

Download or read book Distributed Algorithms written by Wan Fokkink and published by MIT Press. This book was released on 2013-12-06 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to distributed algorithms that emphasizes examples and exercises rather than mathematical argumentation.

Dive Into Deep Learning

Download Dive Into Deep Learning PDF Online Free

Author :
Publisher : Corwin Press
ISBN 13 : 1544385404
Total Pages : 297 pages
Book Rating : 4.5/5 (443 download)

DOWNLOAD NOW!


Book Synopsis Dive Into Deep Learning by : Joanne Quinn

Download or read book Dive Into Deep Learning written by Joanne Quinn and published by Corwin Press. This book was released on 2019-07-15 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: The leading experts in system change and learning, with their school-based partners around the world, have created this essential companion to their runaway best-seller, Deep Learning: Engage the World Change the World. This hands-on guide provides a roadmap for building capacity in teachers, schools, districts, and systems to design deep learning, measure progress, and assess conditions needed to activate and sustain innovation. Dive Into Deep Learning: Tools for Engagement is rich with resources educators need to construct and drive meaningful deep learning experiences in order to develop the kind of mindset and know-how that is crucial to becoming a problem-solving change agent in our global society. Designed in full color, this easy-to-use guide is loaded with tools, tips, protocols, and real-world examples. It includes: • A framework for deep learning that provides a pathway to develop the six global competencies needed to flourish in a complex world — character, citizenship, collaboration, communication, creativity, and critical thinking. • Learning progressions to help educators analyze student work and measure progress. • Learning design rubrics, templates and examples for incorporating the four elements of learning design: learning partnerships, pedagogical practices, learning environments, and leveraging digital. • Conditions rubrics, teacher self-assessment tools, and planning guides to help educators build, mobilize, and sustain deep learning in schools and districts. Learn about, improve, and expand your world of learning. Put the joy back into learning for students and adults alike. Dive into deep learning to create learning experiences that give purpose, unleash student potential, and transform not only learning, but life itself.

Machine Learning

Download Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107096391
Total Pages : 415 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning by : Peter Flach

Download or read book Machine Learning written by Peter Flach and published by Cambridge University Press. This book was released on 2012-09-20 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering all the main approaches in state-of-the-art machine learning research, this will set a new standard as an introductory textbook.

Grokking Algorithms

Download Grokking Algorithms PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638353344
Total Pages : 354 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Grokking Algorithms by : Aditya Bhargava

Download or read book Grokking Algorithms written by Aditya Bhargava and published by Simon and Schuster. This book was released on 2016-05-12 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book does the impossible: it makes math fun and easy!" - Sander Rossel, COAS Software Systems Grokking Algorithms is a fully illustrated, friendly guide that teaches you how to apply common algorithms to the practical problems you face every day as a programmer. You'll start with sorting and searching and, as you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression and artificial intelligence. Each carefully presented example includes helpful diagrams and fully annotated code samples in Python. Learning about algorithms doesn't have to be boring! Get a sneak peek at the fun, illustrated, and friendly examples you'll find in Grokking Algorithms on Manning Publications' YouTube channel. Continue your journey into the world of algorithms with Algorithms in Motion, a practical, hands-on video course available exclusively at Manning.com (www.manning.com/livevideo/algorithms-?in-motion). Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology An algorithm is nothing more than a step-by-step procedure for solving a problem. The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to understand them but refuse to slog through dense multipage proofs, this is the book for you. This fully illustrated and engaging guide makes it easy to learn how to use the most important algorithms effectively in your own programs. About the Book Grokking Algorithms is a friendly take on this core computer science topic. In it, you'll learn how to apply common algorithms to the practical programming problems you face every day. You'll start with tasks like sorting and searching. As you build up your skills, you'll tackle more complex problems like data compression and artificial intelligence. Each carefully presented example includes helpful diagrams and fully annotated code samples in Python. By the end of this book, you will have mastered widely applicable algorithms as well as how and when to use them. What's Inside Covers search, sort, and graph algorithms Over 400 pictures with detailed walkthroughs Performance trade-offs between algorithms Python-based code samples About the Reader This easy-to-read, picture-heavy introduction is suitable for self-taught programmers, engineers, or anyone who wants to brush up on algorithms. About the Author Aditya Bhargava is a Software Engineer with a dual background in Computer Science and Fine Arts. He blogs on programming at adit.io. Table of Contents Introduction to algorithms Selection sort Recursion Quicksort Hash tables Breadth-first search Dijkstra's algorithm Greedy algorithms Dynamic programming K-nearest neighbors

Machine Learning and Security

Download Machine Learning and Security PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491979852
Total Pages : 394 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Security by : Clarence Chio

Download or read book Machine Learning and Security written by Clarence Chio and published by "O'Reilly Media, Inc.". This book was released on 2018-01-26 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself. With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis. Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike. Learn how machine learning has contributed to the success of modern spam filters Quickly detect anomalies, including breaches, fraud, and impending system failure Conduct malware analysis by extracting useful information from computer binaries Uncover attackers within the network by finding patterns inside datasets Examine how attackers exploit consumer-facing websites and app functionality Translate your machine learning algorithms from the lab to production Understand the threat attackers pose to machine learning solutions

Computer Science Distilled

Download Computer Science Distilled PDF Online Free

Author :
Publisher : Code Energy
ISBN 13 : 0997316012
Total Pages : 188 pages
Book Rating : 4.9/5 (973 download)

DOWNLOAD NOW!


Book Synopsis Computer Science Distilled by : Wladston Ferreira Filho

Download or read book Computer Science Distilled written by Wladston Ferreira Filho and published by Code Energy. This book was released on 2017-01-17 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: A walkthrough of computer science concepts you must know. Designed for readers who don't care for academic formalities, it's a fast and easy computer science guide. It teaches the foundations you need to program computers effectively. After a simple introduction to discrete math, it presents common algorithms and data structures. It also outlines the principles that make computers and programming languages work.

Approaching (Almost) Any Machine Learning Problem

Download Approaching (Almost) Any Machine Learning Problem PDF Online Free

Author :
Publisher : Abhishek Thakur
ISBN 13 : 8269211508
Total Pages : 300 pages
Book Rating : 4.2/5 (692 download)

DOWNLOAD NOW!


Book Synopsis Approaching (Almost) Any Machine Learning Problem by : Abhishek Thakur

Download or read book Approaching (Almost) Any Machine Learning Problem written by Abhishek Thakur and published by Abhishek Thakur. This book was released on 2020-07-04 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is not a traditional book. The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option. This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along. Table of contents: - Setting up your working environment - Supervised vs unsupervised learning - Cross-validation - Evaluation metrics - Arranging machine learning projects - Approaching categorical variables - Feature engineering - Feature selection - Hyperparameter optimization - Approaching image classification & segmentation - Approaching text classification/regression - Approaching ensembling and stacking - Approaching reproducible code & model serving There are no sub-headings. Important terms are written in bold. I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions And Subscribe to my youtube channel: https://bit.ly/abhitubesub

Database Internals

Download Database Internals PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492040312
Total Pages : 373 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Database Internals by : Alex Petrov

Download or read book Database Internals written by Alex Petrov and published by O'Reilly Media. This book was released on 2019-09-13 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: When it comes to choosing, using, and maintaining a database, understanding its internals is essential. But with so many distributed databases and tools available today, it’s often difficult to understand what each one offers and how they differ. With this practical guide, Alex Petrov guides developers through the concepts behind modern database and storage engine internals. Throughout the book, you’ll explore relevant material gleaned from numerous books, papers, blog posts, and the source code of several open source databases. These resources are listed at the end of parts one and two. You’ll discover that the most significant distinctions among many modern databases reside in subsystems that determine how storage is organized and how data is distributed. This book examines: Storage engines: Explore storage classification and taxonomy, and dive into B-Tree-based and immutable Log Structured storage engines, with differences and use-cases for each Storage building blocks: Learn how database files are organized to build efficient storage, using auxiliary data structures such as Page Cache, Buffer Pool and Write-Ahead Log Distributed systems: Learn step-by-step how nodes and processes connect and build complex communication patterns Database clusters: Which consistency models are commonly used by modern databases and how distributed storage systems achieve consistency

Boosting

Download Boosting PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262526034
Total Pages : 544 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Boosting by : Robert E. Schapire

Download or read book Boosting written by Robert E. Schapire and published by MIT Press. This book was released on 2014-01-10 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction and essential reference for an approach to machine learning that creates highly accurate prediction rules by combining many weak and inaccurate ones. Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate “rules of thumb.” A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.